| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ov3.1 |
|- S e. _V |
| 2 |
|
ov3.2 |
|- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> R = S ) |
| 3 |
|
ov3.3 |
|- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
| 4 |
1
|
isseti |
|- E. z z = S |
| 5 |
|
nfv |
|- F/ z ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) |
| 6 |
|
nfcv |
|- F/_ z <. A , B >. |
| 7 |
|
nfoprab3 |
|- F/_ z { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
| 8 |
3 7
|
nfcxfr |
|- F/_ z F |
| 9 |
|
nfcv |
|- F/_ z <. C , D >. |
| 10 |
6 8 9
|
nfov |
|- F/_ z ( <. A , B >. F <. C , D >. ) |
| 11 |
10
|
nfeq1 |
|- F/ z ( <. A , B >. F <. C , D >. ) = S |
| 12 |
2
|
eqeq2d |
|- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> ( z = R <-> z = S ) ) |
| 13 |
12
|
copsex4g |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) <-> z = S ) ) |
| 14 |
|
opelxpi |
|- ( ( A e. H /\ B e. H ) -> <. A , B >. e. ( H X. H ) ) |
| 15 |
|
opelxpi |
|- ( ( C e. H /\ D e. H ) -> <. C , D >. e. ( H X. H ) ) |
| 16 |
|
nfcv |
|- F/_ x <. A , B >. |
| 17 |
|
nfcv |
|- F/_ y <. A , B >. |
| 18 |
|
nfcv |
|- F/_ y <. C , D >. |
| 19 |
|
nfv |
|- F/ x E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
| 20 |
|
nfoprab1 |
|- F/_ x { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
| 21 |
3 20
|
nfcxfr |
|- F/_ x F |
| 22 |
|
nfcv |
|- F/_ x y |
| 23 |
16 21 22
|
nfov |
|- F/_ x ( <. A , B >. F y ) |
| 24 |
23
|
nfeq1 |
|- F/ x ( <. A , B >. F y ) = z |
| 25 |
19 24
|
nfim |
|- F/ x ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) |
| 26 |
|
nfv |
|- F/ y E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) |
| 27 |
|
nfoprab2 |
|- F/_ y { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
| 28 |
3 27
|
nfcxfr |
|- F/_ y F |
| 29 |
17 28 18
|
nfov |
|- F/_ y ( <. A , B >. F <. C , D >. ) |
| 30 |
29
|
nfeq1 |
|- F/ y ( <. A , B >. F <. C , D >. ) = z |
| 31 |
26 30
|
nfim |
|- F/ y ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) |
| 32 |
|
eqeq1 |
|- ( x = <. A , B >. -> ( x = <. w , v >. <-> <. A , B >. = <. w , v >. ) ) |
| 33 |
32
|
anbi1d |
|- ( x = <. A , B >. -> ( ( x = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) ) ) |
| 34 |
33
|
anbi1d |
|- ( x = <. A , B >. -> ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
| 35 |
34
|
4exbidv |
|- ( x = <. A , B >. -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
| 36 |
|
oveq1 |
|- ( x = <. A , B >. -> ( x F y ) = ( <. A , B >. F y ) ) |
| 37 |
36
|
eqeq1d |
|- ( x = <. A , B >. -> ( ( x F y ) = z <-> ( <. A , B >. F y ) = z ) ) |
| 38 |
35 37
|
imbi12d |
|- ( x = <. A , B >. -> ( ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) ) ) |
| 39 |
|
eqeq1 |
|- ( y = <. C , D >. -> ( y = <. u , f >. <-> <. C , D >. = <. u , f >. ) ) |
| 40 |
39
|
anbi2d |
|- ( y = <. C , D >. -> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) ) ) |
| 41 |
40
|
anbi1d |
|- ( y = <. C , D >. -> ( ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
| 42 |
41
|
4exbidv |
|- ( y = <. C , D >. -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
| 43 |
|
oveq2 |
|- ( y = <. C , D >. -> ( <. A , B >. F y ) = ( <. A , B >. F <. C , D >. ) ) |
| 44 |
43
|
eqeq1d |
|- ( y = <. C , D >. -> ( ( <. A , B >. F y ) = z <-> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 45 |
42 44
|
imbi12d |
|- ( y = <. C , D >. -> ( ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) ) |
| 46 |
|
moeq |
|- E* z z = R |
| 47 |
46
|
mosubop |
|- E* z E. u E. f ( y = <. u , f >. /\ z = R ) |
| 48 |
47
|
mosubop |
|- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) |
| 49 |
|
anass |
|- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
| 50 |
49
|
2exbii |
|- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
| 51 |
|
19.42vv |
|- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 52 |
50 51
|
bitri |
|- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 53 |
52
|
2exbii |
|- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 54 |
53
|
mobii |
|- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 55 |
48 54
|
mpbir |
|- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
| 56 |
55
|
a1i |
|- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) |
| 57 |
56 3
|
ovidi |
|- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) ) |
| 58 |
16 17 18 25 31 38 45 57
|
vtocl2gaf |
|- ( ( <. A , B >. e. ( H X. H ) /\ <. C , D >. e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 59 |
14 15 58
|
syl2an |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 60 |
13 59
|
sylbird |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 61 |
|
eqeq2 |
|- ( z = S -> ( ( <. A , B >. F <. C , D >. ) = z <-> ( <. A , B >. F <. C , D >. ) = S ) ) |
| 62 |
60 61
|
mpbidi |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
| 63 |
5 11 62
|
exlimd |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. z z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
| 64 |
4 63
|
mpi |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( <. A , B >. F <. C , D >. ) = S ) |