| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvelimab |
|- ( ( F Fn A /\ ( B X. C ) C_ A ) -> ( D e. ( F " ( B X. C ) ) <-> E. z e. ( B X. C ) ( F ` z ) = D ) ) |
| 2 |
|
fveq2 |
|- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
| 3 |
|
df-ov |
|- ( x F y ) = ( F ` <. x , y >. ) |
| 4 |
2 3
|
eqtr4di |
|- ( z = <. x , y >. -> ( F ` z ) = ( x F y ) ) |
| 5 |
4
|
eqeq1d |
|- ( z = <. x , y >. -> ( ( F ` z ) = D <-> ( x F y ) = D ) ) |
| 6 |
|
eqcom |
|- ( ( x F y ) = D <-> D = ( x F y ) ) |
| 7 |
5 6
|
bitrdi |
|- ( z = <. x , y >. -> ( ( F ` z ) = D <-> D = ( x F y ) ) ) |
| 8 |
7
|
rexxp |
|- ( E. z e. ( B X. C ) ( F ` z ) = D <-> E. x e. B E. y e. C D = ( x F y ) ) |
| 9 |
1 8
|
bitrdi |
|- ( ( F Fn A /\ ( B X. C ) C_ A ) -> ( D e. ( F " ( B X. C ) ) <-> E. x e. B E. y e. C D = ( x F y ) ) ) |