Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oveqdr.1 | |- ( ph -> F = G ) |
|
| Assertion | oveqdr | |- ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | |- ( ph -> F = G ) |
|
| 2 | 1 | oveqd | |- ( ph -> ( x F y ) = ( x G y ) ) |
| 3 | 2 | adantr | |- ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) ) |