Metamath Proof Explorer


Theorem oveqdr

Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypothesis oveqdr.1
|- ( ph -> F = G )
Assertion oveqdr
|- ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) )

Proof

Step Hyp Ref Expression
1 oveqdr.1
 |-  ( ph -> F = G )
2 1 oveqd
 |-  ( ph -> ( x F y ) = ( x G y ) )
3 2 adantr
 |-  ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) )