Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oveqdr.1 | |- ( ph -> F = G ) |
|
Assertion | oveqdr | |- ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | |- ( ph -> F = G ) |
|
2 | 1 | oveqd | |- ( ph -> ( x F y ) = ( x G y ) ) |
3 | 2 | adantr | |- ( ( ph /\ ps ) -> ( x F y ) = ( x G y ) ) |