Metamath Proof Explorer


Theorem ovif

Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion ovif
|- ( if ( ph , A , B ) F C ) = if ( ph , ( A F C ) , ( B F C ) )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( if ( ph , A , B ) = A -> ( if ( ph , A , B ) F C ) = ( A F C ) )
2 oveq1
 |-  ( if ( ph , A , B ) = B -> ( if ( ph , A , B ) F C ) = ( B F C ) )
3 1 2 ifsb
 |-  ( if ( ph , A , B ) F C ) = if ( ph , ( A F C ) , ( B F C ) )