| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue |  |-  ( ph -> if ( ph , A , B ) = A ) | 
						
							| 2 |  | iftrue |  |-  ( ph -> if ( ph , C , D ) = C ) | 
						
							| 3 | 1 2 | oveq12d |  |-  ( ph -> ( if ( ph , A , B ) F if ( ph , C , D ) ) = ( A F C ) ) | 
						
							| 4 |  | iftrue |  |-  ( ph -> if ( ph , ( A F C ) , ( B F D ) ) = ( A F C ) ) | 
						
							| 5 | 3 4 | eqtr4d |  |-  ( ph -> ( if ( ph , A , B ) F if ( ph , C , D ) ) = if ( ph , ( A F C ) , ( B F D ) ) ) | 
						
							| 6 |  | iffalse |  |-  ( -. ph -> if ( ph , A , B ) = B ) | 
						
							| 7 |  | iffalse |  |-  ( -. ph -> if ( ph , C , D ) = D ) | 
						
							| 8 | 6 7 | oveq12d |  |-  ( -. ph -> ( if ( ph , A , B ) F if ( ph , C , D ) ) = ( B F D ) ) | 
						
							| 9 |  | iffalse |  |-  ( -. ph -> if ( ph , ( A F C ) , ( B F D ) ) = ( B F D ) ) | 
						
							| 10 | 8 9 | eqtr4d |  |-  ( -. ph -> ( if ( ph , A , B ) F if ( ph , C , D ) ) = if ( ph , ( A F C ) , ( B F D ) ) ) | 
						
							| 11 | 5 10 | pm2.61i |  |-  ( if ( ph , A , B ) F if ( ph , C , D ) ) = if ( ph , ( A F C ) , ( B F D ) ) |