| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovigg.1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
| 2 |
|
ovigg.4 |
|- E* z ph |
| 3 |
|
ovigg.5 |
|- F = { <. <. x , y >. , z >. | ph } |
| 4 |
1
|
eloprabga |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| 5 |
|
df-ov |
|- ( A F B ) = ( F ` <. A , B >. ) |
| 6 |
3
|
fveq1i |
|- ( F ` <. A , B >. ) = ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) |
| 7 |
5 6
|
eqtri |
|- ( A F B ) = ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) |
| 8 |
2
|
funoprab |
|- Fun { <. <. x , y >. , z >. | ph } |
| 9 |
|
funopfv |
|- ( Fun { <. <. x , y >. , z >. | ph } -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) = C ) ) |
| 10 |
8 9
|
ax-mp |
|- ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) = C ) |
| 11 |
7 10
|
eqtrid |
|- ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( A F B ) = C ) |
| 12 |
4 11
|
biimtrrdi |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> ( A F B ) = C ) ) |