Metamath Proof Explorer


Theorem ovmpoa

Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1
|- ( ( x = A /\ y = B ) -> R = S )
ovmpoga.2
|- F = ( x e. C , y e. D |-> R )
ovmpoa.4
|- S e. _V
Assertion ovmpoa
|- ( ( A e. C /\ B e. D ) -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpoga.1
 |-  ( ( x = A /\ y = B ) -> R = S )
2 ovmpoga.2
 |-  F = ( x e. C , y e. D |-> R )
3 ovmpoa.4
 |-  S e. _V
4 1 2 ovmpoga
 |-  ( ( A e. C /\ B e. D /\ S e. _V ) -> ( A F B ) = S )
5 3 4 mp3an3
 |-  ( ( A e. C /\ B e. D ) -> ( A F B ) = S )