Metamath Proof Explorer


Theorem ovmpod

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses ovmpod.1
|- ( ph -> F = ( x e. C , y e. D |-> R ) )
ovmpod.2
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
ovmpod.3
|- ( ph -> A e. C )
ovmpod.4
|- ( ph -> B e. D )
ovmpod.5
|- ( ph -> S e. X )
Assertion ovmpod
|- ( ph -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpod.1
 |-  ( ph -> F = ( x e. C , y e. D |-> R ) )
2 ovmpod.2
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
3 ovmpod.3
 |-  ( ph -> A e. C )
4 ovmpod.4
 |-  ( ph -> B e. D )
5 ovmpod.5
 |-  ( ph -> S e. X )
6 eqidd
 |-  ( ( ph /\ x = A ) -> D = D )
7 1 2 6 3 4 5 ovmpodx
 |-  ( ph -> ( A F B ) = S )