| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpodf.1 |
|- ( ph -> A e. C ) |
| 2 |
|
ovmpodf.2 |
|- ( ( ph /\ x = A ) -> B e. D ) |
| 3 |
|
ovmpodf.3 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
| 4 |
|
ovmpodf.4 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
| 5 |
|
ovmpodf.5 |
|- F/_ x F |
| 6 |
|
ovmpodf.6 |
|- F/ x ps |
| 7 |
|
ovmpodf.7 |
|- F/_ y F |
| 8 |
|
ovmpodf.8 |
|- F/ y ps |
| 9 |
|
nfv |
|- F/ x ph |
| 10 |
|
nfmpo1 |
|- F/_ x ( x e. C , y e. D |-> R ) |
| 11 |
5 10
|
nfeq |
|- F/ x F = ( x e. C , y e. D |-> R ) |
| 12 |
11 6
|
nfim |
|- F/ x ( F = ( x e. C , y e. D |-> R ) -> ps ) |
| 13 |
1
|
elexd |
|- ( ph -> A e. _V ) |
| 14 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
| 15 |
13 14
|
sylib |
|- ( ph -> E. x x = A ) |
| 16 |
|
nfv |
|- F/ y ( ph /\ x = A ) |
| 17 |
|
nfmpo2 |
|- F/_ y ( x e. C , y e. D |-> R ) |
| 18 |
7 17
|
nfeq |
|- F/ y F = ( x e. C , y e. D |-> R ) |
| 19 |
18 8
|
nfim |
|- F/ y ( F = ( x e. C , y e. D |-> R ) -> ps ) |
| 20 |
2
|
elexd |
|- ( ( ph /\ x = A ) -> B e. _V ) |
| 21 |
|
isset |
|- ( B e. _V <-> E. y y = B ) |
| 22 |
20 21
|
sylib |
|- ( ( ph /\ x = A ) -> E. y y = B ) |
| 23 |
|
oveq |
|- ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 24 |
|
simprl |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> x = A ) |
| 25 |
|
simprr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> y = B ) |
| 26 |
24 25
|
oveq12d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 27 |
1
|
adantr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> A e. C ) |
| 28 |
24 27
|
eqeltrd |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> x e. C ) |
| 29 |
2
|
adantrr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> B e. D ) |
| 30 |
25 29
|
eqeltrd |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> y e. D ) |
| 31 |
|
eqid |
|- ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) |
| 32 |
31
|
ovmpt4g |
|- ( ( x e. C /\ y e. D /\ R e. V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
| 33 |
28 30 3 32
|
syl3anc |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
| 34 |
26 33
|
eqtr3d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( A ( x e. C , y e. D |-> R ) B ) = R ) |
| 35 |
34
|
eqeq2d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) <-> ( A F B ) = R ) ) |
| 36 |
35 4
|
sylbid |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) -> ps ) ) |
| 37 |
23 36
|
syl5 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
| 38 |
37
|
expr |
|- ( ( ph /\ x = A ) -> ( y = B -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) ) |
| 39 |
16 19 22 38
|
exlimimdd |
|- ( ( ph /\ x = A ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
| 40 |
9 12 15 39
|
exlimdd |
|- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |