Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpodf.1 |
|- ( ph -> A e. C ) |
2 |
|
ovmpodf.2 |
|- ( ( ph /\ x = A ) -> B e. D ) |
3 |
|
ovmpodf.3 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
4 |
|
ovmpodf.4 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
5 |
|
ovmpodf.5 |
|- F/_ x F |
6 |
|
ovmpodf.6 |
|- F/ x ps |
7 |
|
ovmpodf.7 |
|- F/_ y F |
8 |
|
ovmpodf.8 |
|- F/ y ps |
9 |
|
nfv |
|- F/ x ph |
10 |
|
nfmpo1 |
|- F/_ x ( x e. C , y e. D |-> R ) |
11 |
5 10
|
nfeq |
|- F/ x F = ( x e. C , y e. D |-> R ) |
12 |
11 6
|
nfim |
|- F/ x ( F = ( x e. C , y e. D |-> R ) -> ps ) |
13 |
1
|
elexd |
|- ( ph -> A e. _V ) |
14 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
15 |
13 14
|
sylib |
|- ( ph -> E. x x = A ) |
16 |
|
nfv |
|- F/ y ( ph /\ x = A ) |
17 |
|
nfmpo2 |
|- F/_ y ( x e. C , y e. D |-> R ) |
18 |
7 17
|
nfeq |
|- F/ y F = ( x e. C , y e. D |-> R ) |
19 |
18 8
|
nfim |
|- F/ y ( F = ( x e. C , y e. D |-> R ) -> ps ) |
20 |
2
|
elexd |
|- ( ( ph /\ x = A ) -> B e. _V ) |
21 |
|
isset |
|- ( B e. _V <-> E. y y = B ) |
22 |
20 21
|
sylib |
|- ( ( ph /\ x = A ) -> E. y y = B ) |
23 |
|
oveq |
|- ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
24 |
|
simprl |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> x = A ) |
25 |
|
simprr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> y = B ) |
26 |
24 25
|
oveq12d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
27 |
1
|
adantr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> A e. C ) |
28 |
24 27
|
eqeltrd |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> x e. C ) |
29 |
2
|
adantrr |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> B e. D ) |
30 |
25 29
|
eqeltrd |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> y e. D ) |
31 |
|
eqid |
|- ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) |
32 |
31
|
ovmpt4g |
|- ( ( x e. C /\ y e. D /\ R e. V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
33 |
28 30 3 32
|
syl3anc |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
34 |
26 33
|
eqtr3d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( A ( x e. C , y e. D |-> R ) B ) = R ) |
35 |
34
|
eqeq2d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) <-> ( A F B ) = R ) ) |
36 |
35 4
|
sylbid |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) -> ps ) ) |
37 |
23 36
|
syl5 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
38 |
37
|
expr |
|- ( ( ph /\ x = A ) -> ( y = B -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) ) |
39 |
16 19 22 38
|
exlimimdd |
|- ( ( ph /\ x = A ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
40 |
9 12 15 39
|
exlimdd |
|- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |