Metamath Proof Explorer


Theorem ovmpodv

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1
|- ( ph -> A e. C )
ovmpodf.2
|- ( ( ph /\ x = A ) -> B e. D )
ovmpodf.3
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V )
ovmpodf.4
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) )
Assertion ovmpodv
|- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) )

Proof

Step Hyp Ref Expression
1 ovmpodf.1
 |-  ( ph -> A e. C )
2 ovmpodf.2
 |-  ( ( ph /\ x = A ) -> B e. D )
3 ovmpodf.3
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V )
4 ovmpodf.4
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) )
5 nfcv
 |-  F/_ x F
6 nfv
 |-  F/ x ps
7 nfcv
 |-  F/_ y F
8 nfv
 |-  F/ y ps
9 1 2 3 4 5 6 7 8 ovmpodf
 |-  ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) )