Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovmpodf.1 | |- ( ph -> A e. C ) |
|
ovmpodf.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
||
ovmpodf.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
||
ovmpodf.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
||
Assertion | ovmpodv | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpodf.1 | |- ( ph -> A e. C ) |
|
2 | ovmpodf.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
|
3 | ovmpodf.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
|
4 | ovmpodf.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
|
5 | nfcv | |- F/_ x F |
|
6 | nfv | |- F/ x ps |
|
7 | nfcv | |- F/_ y F |
|
8 | nfv | |- F/ y ps |
|
9 | 1 2 3 4 5 6 7 8 | ovmpodf | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |