| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovmpodv2.1 |  |-  ( ph -> A e. C ) | 
						
							| 2 |  | ovmpodv2.2 |  |-  ( ( ph /\ x = A ) -> B e. D ) | 
						
							| 3 |  | ovmpodv2.3 |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) | 
						
							| 4 |  | ovmpodv2.4 |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) ) | 
						
							| 6 | 4 | eqeq2d |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) | 
						
							| 7 | 6 | biimpd |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) | 
						
							| 8 |  | nfmpo1 |  |-  F/_ x ( x e. C , y e. D |-> R ) | 
						
							| 9 |  | nfcv |  |-  F/_ x A | 
						
							| 10 |  | nfcv |  |-  F/_ x B | 
						
							| 11 | 9 8 10 | nfov |  |-  F/_ x ( A ( x e. C , y e. D |-> R ) B ) | 
						
							| 12 | 11 | nfeq1 |  |-  F/ x ( A ( x e. C , y e. D |-> R ) B ) = S | 
						
							| 13 |  | nfmpo2 |  |-  F/_ y ( x e. C , y e. D |-> R ) | 
						
							| 14 |  | nfcv |  |-  F/_ y A | 
						
							| 15 |  | nfcv |  |-  F/_ y B | 
						
							| 16 | 14 13 15 | nfov |  |-  F/_ y ( A ( x e. C , y e. D |-> R ) B ) | 
						
							| 17 | 16 | nfeq1 |  |-  F/ y ( A ( x e. C , y e. D |-> R ) B ) = S | 
						
							| 18 | 1 2 3 7 8 12 13 17 | ovmpodf |  |-  ( ph -> ( ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) | 
						
							| 19 | 5 18 | mpd |  |-  ( ph -> ( A ( x e. C , y e. D |-> R ) B ) = S ) | 
						
							| 20 |  | oveq |  |-  ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( F = ( x e. C , y e. D |-> R ) -> ( ( A F B ) = S <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) | 
						
							| 22 | 19 21 | syl5ibrcom |  |-  ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = S ) ) |