Metamath Proof Explorer


Theorem ovmpodx

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovmpodx.1
|- ( ph -> F = ( x e. C , y e. D |-> R ) )
ovmpodx.2
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
ovmpodx.3
|- ( ( ph /\ x = A ) -> D = L )
ovmpodx.4
|- ( ph -> A e. C )
ovmpodx.5
|- ( ph -> B e. L )
ovmpodx.6
|- ( ph -> S e. X )
Assertion ovmpodx
|- ( ph -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpodx.1
 |-  ( ph -> F = ( x e. C , y e. D |-> R ) )
2 ovmpodx.2
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
3 ovmpodx.3
 |-  ( ( ph /\ x = A ) -> D = L )
4 ovmpodx.4
 |-  ( ph -> A e. C )
5 ovmpodx.5
 |-  ( ph -> B e. L )
6 ovmpodx.6
 |-  ( ph -> S e. X )
7 nfv
 |-  F/ x ph
8 nfv
 |-  F/ y ph
9 nfcv
 |-  F/_ y A
10 nfcv
 |-  F/_ x B
11 nfcv
 |-  F/_ x S
12 nfcv
 |-  F/_ y S
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpodxf
 |-  ( ph -> ( A F B ) = S )