Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpodx.1 |
|- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
2 |
|
ovmpodx.2 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
3 |
|
ovmpodx.3 |
|- ( ( ph /\ x = A ) -> D = L ) |
4 |
|
ovmpodx.4 |
|- ( ph -> A e. C ) |
5 |
|
ovmpodx.5 |
|- ( ph -> B e. L ) |
6 |
|
ovmpodx.6 |
|- ( ph -> S e. X ) |
7 |
|
ovmpodxf.px |
|- F/ x ph |
8 |
|
ovmpodxf.py |
|- F/ y ph |
9 |
|
ovmpodxf.ay |
|- F/_ y A |
10 |
|
ovmpodxf.bx |
|- F/_ x B |
11 |
|
ovmpodxf.sx |
|- F/_ x S |
12 |
|
ovmpodxf.sy |
|- F/_ y S |
13 |
1
|
oveqd |
|- ( ph -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
14 |
|
eqid |
|- ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) |
15 |
14
|
ovmpt4g |
|- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
16 |
15
|
a1i |
|- ( ph -> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
17 |
8 16
|
alrimi |
|- ( ph -> A. y ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
18 |
5 17
|
spsbcd |
|- ( ph -> [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
19 |
7 18
|
alrimi |
|- ( ph -> A. x [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
20 |
4 19
|
spsbcd |
|- ( ph -> [. A / x ]. [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
21 |
5
|
adantr |
|- ( ( ph /\ x = A ) -> B e. L ) |
22 |
|
simplr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> x = A ) |
23 |
4
|
ad2antrr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> A e. C ) |
24 |
22 23
|
eqeltrd |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> x e. C ) |
25 |
5
|
ad2antrr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> B e. L ) |
26 |
|
simpr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> y = B ) |
27 |
3
|
adantr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> D = L ) |
28 |
25 26 27
|
3eltr4d |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> y e. D ) |
29 |
2
|
anassrs |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> R = S ) |
30 |
6
|
elexd |
|- ( ph -> S e. _V ) |
31 |
30
|
ad2antrr |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> S e. _V ) |
32 |
29 31
|
eqeltrd |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> R e. _V ) |
33 |
|
biimt |
|- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) ) |
34 |
24 28 32 33
|
syl3anc |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) ) |
35 |
22 26
|
oveq12d |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( x ( x e. C , y e. D |-> R ) y ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
36 |
35 29
|
eqeq12d |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
37 |
34 36
|
bitr3d |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
38 |
9
|
nfeq2 |
|- F/ y x = A |
39 |
8 38
|
nfan |
|- F/ y ( ph /\ x = A ) |
40 |
|
nfmpo2 |
|- F/_ y ( x e. C , y e. D |-> R ) |
41 |
|
nfcv |
|- F/_ y B |
42 |
9 40 41
|
nfov |
|- F/_ y ( A ( x e. C , y e. D |-> R ) B ) |
43 |
42 12
|
nfeq |
|- F/ y ( A ( x e. C , y e. D |-> R ) B ) = S |
44 |
43
|
a1i |
|- ( ( ph /\ x = A ) -> F/ y ( A ( x e. C , y e. D |-> R ) B ) = S ) |
45 |
21 37 39 44
|
sbciedf |
|- ( ( ph /\ x = A ) -> ( [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
46 |
|
nfcv |
|- F/_ x A |
47 |
|
nfmpo1 |
|- F/_ x ( x e. C , y e. D |-> R ) |
48 |
46 47 10
|
nfov |
|- F/_ x ( A ( x e. C , y e. D |-> R ) B ) |
49 |
48 11
|
nfeq |
|- F/ x ( A ( x e. C , y e. D |-> R ) B ) = S |
50 |
49
|
a1i |
|- ( ph -> F/ x ( A ( x e. C , y e. D |-> R ) B ) = S ) |
51 |
4 45 7 50
|
sbciedf |
|- ( ph -> ( [. A / x ]. [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
52 |
20 51
|
mpbid |
|- ( ph -> ( A ( x e. C , y e. D |-> R ) B ) = S ) |
53 |
13 52
|
eqtrd |
|- ( ph -> ( A F B ) = S ) |