Metamath Proof Explorer


Theorem ovmpot

Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025) (Revised by GG, 13-Apr-2025)

Ref Expression
Assertion ovmpot
|- ( ( A e. C /\ B e. D ) -> ( A ( x e. C , y e. D |-> ( x F y ) ) B ) = ( A F B ) )

Proof

Step Hyp Ref Expression
1 oveq12
 |-  ( ( x = A /\ y = B ) -> ( x F y ) = ( A F B ) )
2 eqid
 |-  ( x e. C , y e. D |-> ( x F y ) ) = ( x e. C , y e. D |-> ( x F y ) )
3 ovex
 |-  ( A F B ) e. _V
4 1 2 3 ovmpoa
 |-  ( ( A e. C /\ B e. D ) -> ( A ( x e. C , y e. D |-> ( x F y ) ) B ) = ( A F B ) )