| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpt4g.3 |
|- F = ( x e. A , y e. B |-> C ) |
| 2 |
|
elisset |
|- ( C e. V -> E. z z = C ) |
| 3 |
|
moeq |
|- E* z z = C |
| 4 |
3
|
a1i |
|- ( ( x e. A /\ y e. B ) -> E* z z = C ) |
| 5 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 6 |
1 5
|
eqtri |
|- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 7 |
4 6
|
ovidi |
|- ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = z ) ) |
| 8 |
|
eqeq2 |
|- ( z = C -> ( ( x F y ) = z <-> ( x F y ) = C ) ) |
| 9 |
7 8
|
mpbidi |
|- ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = C ) ) |
| 10 |
9
|
exlimdv |
|- ( ( x e. A /\ y e. B ) -> ( E. z z = C -> ( x F y ) = C ) ) |
| 11 |
2 10
|
syl5 |
|- ( ( x e. A /\ y e. B ) -> ( C e. V -> ( x F y ) = C ) ) |
| 12 |
11
|
3impia |
|- ( ( x e. A /\ y e. B /\ C e. V ) -> ( x F y ) = C ) |