Metamath Proof Explorer


Theorem ovmul

Description: Multiplication of complex numbers produces the same value as multiplication expressed in maps-to notation of the same complex numbers. (Contributed by GG, 16-Mar-2025)

Ref Expression
Assertion ovmul
|- ( ( A e. CC /\ B e. CC ) -> ( A ( x e. CC , y e. CC |-> ( x x. y ) ) B ) = ( A x. B ) )

Proof

Step Hyp Ref Expression
1 oveq12
 |-  ( ( x = A /\ y = B ) -> ( x x. y ) = ( A x. B ) )
2 eqid
 |-  ( x e. CC , y e. CC |-> ( x x. y ) ) = ( x e. CC , y e. CC |-> ( x x. y ) )
3 ovex
 |-  ( A x. B ) e. _V
4 1 2 3 ovmpoa
 |-  ( ( A e. CC /\ B e. CC ) -> ( A ( x e. CC , y e. CC |-> ( x x. y ) ) B ) = ( A x. B ) )