| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren |  |-  ( NN ~~ A <-> E. f f : NN -1-1-onto-> A ) | 
						
							| 2 |  | simpll |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> A C_ RR ) | 
						
							| 3 |  | f1of |  |-  ( f : NN -1-1-onto-> A -> f : NN --> A ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN --> A ) | 
						
							| 5 | 4 | ffvelcdmda |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. A ) | 
						
							| 6 | 2 5 | sseldd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. RR ) | 
						
							| 7 | 6 | leidd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( f ` x ) ) | 
						
							| 8 |  | df-br |  |-  ( ( f ` x ) <_ ( f ` x ) <-> <. ( f ` x ) , ( f ` x ) >. e. <_ ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. <_ ) | 
						
							| 10 | 6 6 | opelxpd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( RR X. RR ) ) | 
						
							| 11 | 9 10 | elind |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 12 |  | df-ov |  |-  ( ( f ` x ) _I ( f ` x ) ) = ( _I ` <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 13 |  | opex |  |-  <. ( f ` x ) , ( f ` x ) >. e. _V | 
						
							| 14 |  | fvi |  |-  ( <. ( f ` x ) , ( f ` x ) >. e. _V -> ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. | 
						
							| 16 | 12 15 | eqtri |  |-  ( ( f ` x ) _I ( f ` x ) ) = <. ( f ` x ) , ( f ` x ) >. | 
						
							| 17 | 16 | mpteq2i |  |-  ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 18 | 11 17 | fmptd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 19 |  | nnex |  |-  NN e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> NN e. _V ) | 
						
							| 21 | 6 | recnd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. CC ) | 
						
							| 22 | 4 | feqmptd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f = ( x e. NN |-> ( f ` x ) ) ) | 
						
							| 23 | 20 21 21 22 22 | offval2 |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) ) | 
						
							| 24 | 23 | feq1d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) <-> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) ) | 
						
							| 25 | 18 24 | mpbird |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 26 |  | f1ofo |  |-  ( f : NN -1-1-onto-> A -> f : NN -onto-> A ) | 
						
							| 27 | 26 | adantl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN -onto-> A ) | 
						
							| 28 |  | forn |  |-  ( f : NN -onto-> A -> ran f = A ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran f = A ) | 
						
							| 30 | 29 | eleq2d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> y e. A ) ) | 
						
							| 31 |  | f1ofn |  |-  ( f : NN -1-1-onto-> A -> f Fn NN ) | 
						
							| 32 | 31 | adantl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f Fn NN ) | 
						
							| 33 |  | fvelrnb |  |-  ( f Fn NN -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) | 
						
							| 35 | 30 34 | bitr3d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A <-> E. x e. NN ( f ` x ) = y ) ) | 
						
							| 36 | 23 17 | eqtrdi |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) ` x ) = ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) ) | 
						
							| 38 |  | eqid |  |-  ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 39 | 38 | fvmpt2 |  |-  ( ( x e. NN /\ <. ( f ` x ) , ( f ` x ) >. e. _V ) -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 40 | 13 39 | mpan2 |  |-  ( x e. NN -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 41 | 37 40 | sylan9eq |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f oF _I f ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) ) | 
						
							| 43 |  | fvex |  |-  ( f ` x ) e. _V | 
						
							| 44 | 43 43 | op1st |  |-  ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) | 
						
							| 45 | 42 44 | eqtrdi |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) | 
						
							| 46 | 45 7 | eqbrtrd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) ) | 
						
							| 47 | 41 | fveq2d |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) ) | 
						
							| 48 | 43 43 | op2nd |  |-  ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) | 
						
							| 49 | 47 48 | eqtrdi |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) | 
						
							| 50 | 7 49 | breqtrrd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) | 
						
							| 51 | 46 50 | jca |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) | 
						
							| 52 |  | breq2 |  |-  ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) <-> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y ) ) | 
						
							| 53 |  | breq1 |  |-  ( ( f ` x ) = y -> ( ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) <-> y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) | 
						
							| 54 | 52 53 | anbi12d |  |-  ( ( f ` x ) = y -> ( ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) <-> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 55 | 51 54 | syl5ibcom |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 56 | 55 | reximdva |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( E. x e. NN ( f ` x ) = y -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 57 | 35 56 | sylbid |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 58 | 57 | ralrimiv |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) | 
						
							| 59 |  | ovolficc |  |-  ( ( A C_ RR /\ ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 60 | 25 59 | syldan |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) | 
						
							| 61 | 58 60 | mpbird |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A C_ U. ran ( [,] o. ( f oF _I f ) ) ) | 
						
							| 62 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) | 
						
							| 63 | 62 | ovollb2 |  |-  ( ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. ( f oF _I f ) ) ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) | 
						
							| 64 | 25 61 63 | syl2anc |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) | 
						
							| 65 | 21 21 | opelxpd |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( CC X. CC ) ) | 
						
							| 66 |  | absf |  |-  abs : CC --> RR | 
						
							| 67 |  | subf |  |-  - : ( CC X. CC ) --> CC | 
						
							| 68 |  | fco |  |-  ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 69 | 66 67 68 | mp2an |  |-  ( abs o. - ) : ( CC X. CC ) --> RR | 
						
							| 70 | 69 | a1i |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 71 | 70 | feqmptd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) = ( y e. ( CC X. CC ) |-> ( ( abs o. - ) ` y ) ) ) | 
						
							| 72 |  | fveq2 |  |-  ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) ) | 
						
							| 73 |  | df-ov |  |-  ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) | 
						
							| 74 | 72 73 | eqtr4di |  |-  ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) | 
						
							| 75 | 65 36 71 74 | fmptco |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) ) | 
						
							| 76 |  | cnmet |  |-  ( abs o. - ) e. ( Met ` CC ) | 
						
							| 77 |  | met0 |  |-  ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( f ` x ) e. CC ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) | 
						
							| 78 | 76 21 77 | sylancr |  |-  ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) | 
						
							| 79 | 78 | mpteq2dva |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) = ( x e. NN |-> 0 ) ) | 
						
							| 80 | 75 79 | eqtrd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> 0 ) ) | 
						
							| 81 |  | fconstmpt |  |-  ( NN X. { 0 } ) = ( x e. NN |-> 0 ) | 
						
							| 82 | 80 81 | eqtr4di |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( NN X. { 0 } ) ) | 
						
							| 83 | 82 | seqeq3d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( NN X. { 0 } ) ) ) | 
						
							| 84 |  | 1z |  |-  1 e. ZZ | 
						
							| 85 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 86 | 85 | ser0f |  |-  ( 1 e. ZZ -> seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) ) | 
						
							| 87 | 84 86 | ax-mp |  |-  seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) | 
						
							| 88 | 83 87 | eqtrdi |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ( NN X. { 0 } ) ) | 
						
							| 89 | 88 | rneqd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ran ( NN X. { 0 } ) ) | 
						
							| 90 |  | 1nn |  |-  1 e. NN | 
						
							| 91 |  | ne0i |  |-  ( 1 e. NN -> NN =/= (/) ) | 
						
							| 92 |  | rnxp |  |-  ( NN =/= (/) -> ran ( NN X. { 0 } ) = { 0 } ) | 
						
							| 93 | 90 91 92 | mp2b |  |-  ran ( NN X. { 0 } ) = { 0 } | 
						
							| 94 | 89 93 | eqtrdi |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = { 0 } ) | 
						
							| 95 | 94 | supeq1d |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) ) | 
						
							| 96 |  | xrltso |  |-  < Or RR* | 
						
							| 97 |  | 0xr |  |-  0 e. RR* | 
						
							| 98 |  | supsn |  |-  ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) | 
						
							| 99 | 96 97 98 | mp2an |  |-  sup ( { 0 } , RR* , < ) = 0 | 
						
							| 100 | 95 99 | eqtrdi |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = 0 ) | 
						
							| 101 | 64 100 | breqtrd |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ 0 ) | 
						
							| 102 |  | ovolge0 |  |-  ( A C_ RR -> 0 <_ ( vol* ` A ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> 0 <_ ( vol* ` A ) ) | 
						
							| 104 |  | ovolcl |  |-  ( A C_ RR -> ( vol* ` A ) e. RR* ) | 
						
							| 105 | 104 | adantr |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) e. RR* ) | 
						
							| 106 |  | xrletri3 |  |-  ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) | 
						
							| 107 | 105 97 106 | sylancl |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) | 
						
							| 108 | 101 103 107 | mpbir2and |  |-  ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) = 0 ) | 
						
							| 109 | 108 | ex |  |-  ( A C_ RR -> ( f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) | 
						
							| 110 | 109 | exlimdv |  |-  ( A C_ RR -> ( E. f f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) | 
						
							| 111 | 1 110 | biimtrid |  |-  ( A C_ RR -> ( NN ~~ A -> ( vol* ` A ) = 0 ) ) | 
						
							| 112 |  | ensym |  |-  ( A ~~ NN -> NN ~~ A ) | 
						
							| 113 | 111 112 | impel |  |-  ( ( A C_ RR /\ A ~~ NN ) -> ( vol* ` A ) = 0 ) |