Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
|- A C_ ( A u. NN ) |
2 |
|
simpl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> A C_ RR ) |
3 |
|
nnssre |
|- NN C_ RR |
4 |
|
unss |
|- ( ( A C_ RR /\ NN C_ RR ) <-> ( A u. NN ) C_ RR ) |
5 |
2 3 4
|
sylanblc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) C_ RR ) |
6 |
|
nnenom |
|- NN ~~ _om |
7 |
|
domentr |
|- ( ( A ~<_ NN /\ NN ~~ _om ) -> A ~<_ _om ) |
8 |
6 7
|
mpan2 |
|- ( A ~<_ NN -> A ~<_ _om ) |
9 |
8
|
adantl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> A ~<_ _om ) |
10 |
|
nnct |
|- NN ~<_ _om |
11 |
|
unctb |
|- ( ( A ~<_ _om /\ NN ~<_ _om ) -> ( A u. NN ) ~<_ _om ) |
12 |
9 10 11
|
sylancl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ _om ) |
13 |
6
|
ensymi |
|- _om ~~ NN |
14 |
|
domentr |
|- ( ( ( A u. NN ) ~<_ _om /\ _om ~~ NN ) -> ( A u. NN ) ~<_ NN ) |
15 |
12 13 14
|
sylancl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ NN ) |
16 |
|
reex |
|- RR e. _V |
17 |
16
|
ssex |
|- ( ( A u. NN ) C_ RR -> ( A u. NN ) e. _V ) |
18 |
5 17
|
syl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) e. _V ) |
19 |
|
ssun2 |
|- NN C_ ( A u. NN ) |
20 |
|
ssdomg |
|- ( ( A u. NN ) e. _V -> ( NN C_ ( A u. NN ) -> NN ~<_ ( A u. NN ) ) ) |
21 |
18 19 20
|
mpisyl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> NN ~<_ ( A u. NN ) ) |
22 |
|
sbth |
|- ( ( ( A u. NN ) ~<_ NN /\ NN ~<_ ( A u. NN ) ) -> ( A u. NN ) ~~ NN ) |
23 |
15 21 22
|
syl2anc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~~ NN ) |
24 |
|
ovolctb |
|- ( ( ( A u. NN ) C_ RR /\ ( A u. NN ) ~~ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
25 |
5 23 24
|
syl2anc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
26 |
|
ovolssnul |
|- ( ( A C_ ( A u. NN ) /\ ( A u. NN ) C_ RR /\ ( vol* ` ( A u. NN ) ) = 0 ) -> ( vol* ` A ) = 0 ) |
27 |
1 5 25 26
|
mp3an2i |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` A ) = 0 ) |