| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
|- A C_ ( A u. NN ) |
| 2 |
|
simpl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> A C_ RR ) |
| 3 |
|
nnssre |
|- NN C_ RR |
| 4 |
|
unss |
|- ( ( A C_ RR /\ NN C_ RR ) <-> ( A u. NN ) C_ RR ) |
| 5 |
2 3 4
|
sylanblc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) C_ RR ) |
| 6 |
|
nnenom |
|- NN ~~ _om |
| 7 |
|
domentr |
|- ( ( A ~<_ NN /\ NN ~~ _om ) -> A ~<_ _om ) |
| 8 |
6 7
|
mpan2 |
|- ( A ~<_ NN -> A ~<_ _om ) |
| 9 |
8
|
adantl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> A ~<_ _om ) |
| 10 |
|
nnct |
|- NN ~<_ _om |
| 11 |
|
unctb |
|- ( ( A ~<_ _om /\ NN ~<_ _om ) -> ( A u. NN ) ~<_ _om ) |
| 12 |
9 10 11
|
sylancl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ _om ) |
| 13 |
6
|
ensymi |
|- _om ~~ NN |
| 14 |
|
domentr |
|- ( ( ( A u. NN ) ~<_ _om /\ _om ~~ NN ) -> ( A u. NN ) ~<_ NN ) |
| 15 |
12 13 14
|
sylancl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ NN ) |
| 16 |
|
reex |
|- RR e. _V |
| 17 |
16
|
ssex |
|- ( ( A u. NN ) C_ RR -> ( A u. NN ) e. _V ) |
| 18 |
5 17
|
syl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) e. _V ) |
| 19 |
|
ssun2 |
|- NN C_ ( A u. NN ) |
| 20 |
|
ssdomg |
|- ( ( A u. NN ) e. _V -> ( NN C_ ( A u. NN ) -> NN ~<_ ( A u. NN ) ) ) |
| 21 |
18 19 20
|
mpisyl |
|- ( ( A C_ RR /\ A ~<_ NN ) -> NN ~<_ ( A u. NN ) ) |
| 22 |
|
sbth |
|- ( ( ( A u. NN ) ~<_ NN /\ NN ~<_ ( A u. NN ) ) -> ( A u. NN ) ~~ NN ) |
| 23 |
15 21 22
|
syl2anc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~~ NN ) |
| 24 |
|
ovolctb |
|- ( ( ( A u. NN ) C_ RR /\ ( A u. NN ) ~~ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
| 25 |
5 23 24
|
syl2anc |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
| 26 |
|
ovolssnul |
|- ( ( A C_ ( A u. NN ) /\ ( A u. NN ) C_ RR /\ ( vol* ` ( A u. NN ) ) = 0 ) -> ( vol* ` A ) = 0 ) |
| 27 |
1 5 25 26
|
mp3an2i |
|- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` A ) = 0 ) |