Step |
Hyp |
Ref |
Expression |
1 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
2 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
3 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
4 |
2 3
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
5 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
6 |
4 5
|
mpan2 |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( RR* X. RR* ) ) |
7 |
|
fco |
|- ( ( [,] : ( RR* X. RR* ) --> ~P RR* /\ F : NN --> ( RR* X. RR* ) ) -> ( [,] o. F ) : NN --> ~P RR* ) |
8 |
1 6 7
|
sylancr |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( [,] o. F ) : NN --> ~P RR* ) |
9 |
|
ffn |
|- ( ( [,] o. F ) : NN --> ~P RR* -> ( [,] o. F ) Fn NN ) |
10 |
|
fniunfv |
|- ( ( [,] o. F ) Fn NN -> U_ n e. NN ( ( [,] o. F ) ` n ) = U. ran ( [,] o. F ) ) |
11 |
8 9 10
|
3syl |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U_ n e. NN ( ( [,] o. F ) ` n ) = U. ran ( [,] o. F ) ) |
12 |
11
|
sseq2d |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A C_ U. ran ( [,] o. F ) ) ) |
13 |
12
|
adantl |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A C_ U. ran ( [,] o. F ) ) ) |
14 |
|
dfss3 |
|- ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A z e. U_ n e. NN ( ( [,] o. F ) ` n ) ) |
15 |
|
ssel2 |
|- ( ( A C_ RR /\ z e. A ) -> z e. RR ) |
16 |
|
eliun |
|- ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN z e. ( ( [,] o. F ) ` n ) ) |
17 |
|
simpll |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> z e. RR ) |
18 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( [,] o. F ) ` n ) = ( [,] ` ( F ` n ) ) ) |
19 |
|
ffvelrn |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
20 |
19
|
elin2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) |
21 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
22 |
20 21
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
23 |
22
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( [,] ` ( F ` n ) ) = ( [,] ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
24 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) = ( [,] ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
25 |
23 24
|
eqtr4di |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( [,] ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) |
26 |
18 25
|
eqtrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( [,] o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) |
27 |
26
|
eleq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) ) |
28 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
29 |
|
elicc2 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
30 |
|
3anass |
|- ( ( z e. RR /\ ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
31 |
29 30
|
bitrdi |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) |
32 |
31
|
3adant3 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) |
33 |
28 32
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) |
34 |
27 33
|
bitrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) |
35 |
34
|
adantll |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) |
36 |
17 35
|
mpbirand |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
37 |
36
|
rexbidva |
|- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( E. n e. NN z e. ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
38 |
16 37
|
syl5bb |
|- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
39 |
15 38
|
sylan |
|- ( ( ( A C_ RR /\ z e. A ) /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
40 |
39
|
an32s |
|- ( ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ z e. A ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
41 |
40
|
ralbidva |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A. z e. A z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
42 |
14 41
|
syl5bb |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |
43 |
13 42
|
bitr3d |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. F ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |