| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccf |  |-  [,] : ( RR* X. RR* ) --> ~P RR* | 
						
							| 2 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 3 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 4 | 2 3 | sstri |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) | 
						
							| 5 |  | fss |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( RR* X. RR* ) ) | 
						
							| 7 |  | fco |  |-  ( ( [,] : ( RR* X. RR* ) --> ~P RR* /\ F : NN --> ( RR* X. RR* ) ) -> ( [,] o. F ) : NN --> ~P RR* ) | 
						
							| 8 | 1 6 7 | sylancr |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( [,] o. F ) : NN --> ~P RR* ) | 
						
							| 9 |  | ffn |  |-  ( ( [,] o. F ) : NN --> ~P RR* -> ( [,] o. F ) Fn NN ) | 
						
							| 10 |  | fniunfv |  |-  ( ( [,] o. F ) Fn NN -> U_ n e. NN ( ( [,] o. F ) ` n ) = U. ran ( [,] o. F ) ) | 
						
							| 11 | 8 9 10 | 3syl |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U_ n e. NN ( ( [,] o. F ) ` n ) = U. ran ( [,] o. F ) ) | 
						
							| 12 | 11 | sseq2d |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A C_ U. ran ( [,] o. F ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A C_ U. ran ( [,] o. F ) ) ) | 
						
							| 14 |  | dfss3 |  |-  ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A z e. U_ n e. NN ( ( [,] o. F ) ` n ) ) | 
						
							| 15 |  | ssel2 |  |-  ( ( A C_ RR /\ z e. A ) -> z e. RR ) | 
						
							| 16 |  | eliun |  |-  ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN z e. ( ( [,] o. F ) ` n ) ) | 
						
							| 17 |  | simpll |  |-  ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> z e. RR ) | 
						
							| 18 |  | fvco3 |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( [,] o. F ) ` n ) = ( [,] ` ( F ` n ) ) ) | 
						
							| 19 |  | ffvelcdm |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 20 | 19 | elin2d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) | 
						
							| 21 |  | 1st2nd2 |  |-  ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( [,] ` ( F ` n ) ) = ( [,] ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 24 |  | df-ov |  |-  ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) = ( [,] ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 25 | 23 24 | eqtr4di |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( [,] ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 26 | 18 25 | eqtrd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( [,] o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 27 | 26 | eleq2d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 28 |  | ovolfcl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 29 |  | elicc2 |  |-  ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 30 |  | 3anass |  |-  ( ( z e. RR /\ ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 31 | 29 30 | bitrdi |  |-  ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 32 | 31 | 3adant3 |  |-  ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( 1st ` ( F ` n ) ) [,] ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 34 | 27 33 | bitrd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 35 | 34 | adantll |  |-  ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( z e. RR /\ ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 36 | 17 35 | mpbirand |  |-  ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( [,] o. F ) ` n ) <-> ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 37 | 36 | rexbidva |  |-  ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( E. n e. NN z e. ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 38 | 16 37 | bitrid |  |-  ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 39 | 15 38 | sylan |  |-  ( ( ( A C_ RR /\ z e. A ) /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 40 | 39 | an32s |  |-  ( ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ z e. A ) -> ( z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 41 | 40 | ralbidva |  |-  ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A. z e. A z e. U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 42 | 14 41 | bitrid |  |-  ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( [,] o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 43 | 13 42 | bitr3d |  |-  ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. F ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) <_ z /\ z <_ ( 2nd ` ( F ` n ) ) ) ) ) |