| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnco2 |  |-  ran ( [,] o. F ) = ( [,] " ran F ) | 
						
							| 2 |  | ffvelcdm |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 3 | 2 | elin2d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) e. ( RR X. RR ) ) | 
						
							| 4 |  | 1st2nd2 |  |-  ( ( F ` y ) e. ( RR X. RR ) -> ( F ` y ) = <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) = <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) = ( [,] ` <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) ) | 
						
							| 7 |  | df-ov |  |-  ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) = ( [,] ` <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) | 
						
							| 8 | 6 7 | eqtr4di |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) = ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) ) | 
						
							| 9 |  | xp1st |  |-  ( ( F ` y ) e. ( RR X. RR ) -> ( 1st ` ( F ` y ) ) e. RR ) | 
						
							| 10 | 3 9 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( 1st ` ( F ` y ) ) e. RR ) | 
						
							| 11 |  | xp2nd |  |-  ( ( F ` y ) e. ( RR X. RR ) -> ( 2nd ` ( F ` y ) ) e. RR ) | 
						
							| 12 | 3 11 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( 2nd ` ( F ` y ) ) e. RR ) | 
						
							| 13 |  | iccssre |  |-  ( ( ( 1st ` ( F ` y ) ) e. RR /\ ( 2nd ` ( F ` y ) ) e. RR ) -> ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) C_ RR ) | 
						
							| 14 | 10 12 13 | syl2anc |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) C_ RR ) | 
						
							| 15 | 8 14 | eqsstrd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) C_ RR ) | 
						
							| 16 |  | reex |  |-  RR e. _V | 
						
							| 17 | 16 | elpw2 |  |-  ( ( [,] ` ( F ` y ) ) e. ~P RR <-> ( [,] ` ( F ` y ) ) C_ RR ) | 
						
							| 18 | 15 17 | sylibr |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) e. ~P RR ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) | 
						
							| 20 |  | ffn |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F Fn NN ) | 
						
							| 21 |  | fveq2 |  |-  ( x = ( F ` y ) -> ( [,] ` x ) = ( [,] ` ( F ` y ) ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( x = ( F ` y ) -> ( ( [,] ` x ) e. ~P RR <-> ( [,] ` ( F ` y ) ) e. ~P RR ) ) | 
						
							| 23 | 22 | ralrn |  |-  ( F Fn NN -> ( A. x e. ran F ( [,] ` x ) e. ~P RR <-> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) ) | 
						
							| 24 | 20 23 | syl |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A. x e. ran F ( [,] ` x ) e. ~P RR <-> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) ) | 
						
							| 25 | 19 24 | mpbird |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> A. x e. ran F ( [,] ` x ) e. ~P RR ) | 
						
							| 26 |  | iccf |  |-  [,] : ( RR* X. RR* ) --> ~P RR* | 
						
							| 27 |  | ffun |  |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) | 
						
							| 28 | 26 27 | ax-mp |  |-  Fun [,] | 
						
							| 29 |  | frn |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 30 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 31 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 32 | 30 31 | sstri |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) | 
						
							| 33 | 26 | fdmi |  |-  dom [,] = ( RR* X. RR* ) | 
						
							| 34 | 32 33 | sseqtrri |  |-  ( <_ i^i ( RR X. RR ) ) C_ dom [,] | 
						
							| 35 | 29 34 | sstrdi |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ dom [,] ) | 
						
							| 36 |  | funimass4 |  |-  ( ( Fun [,] /\ ran F C_ dom [,] ) -> ( ( [,] " ran F ) C_ ~P RR <-> A. x e. ran F ( [,] ` x ) e. ~P RR ) ) | 
						
							| 37 | 28 35 36 | sylancr |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( [,] " ran F ) C_ ~P RR <-> A. x e. ran F ( [,] ` x ) e. ~P RR ) ) | 
						
							| 38 | 25 37 | mpbird |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( [,] " ran F ) C_ ~P RR ) | 
						
							| 39 | 1 38 | eqsstrid |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran ( [,] o. F ) C_ ~P RR ) | 
						
							| 40 |  | sspwuni |  |-  ( ran ( [,] o. F ) C_ ~P RR <-> U. ran ( [,] o. F ) C_ RR ) | 
						
							| 41 | 39 40 | sylib |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |