| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 2 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
| 3 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 4 |
2 3
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 5 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 6 |
4 5
|
mpan2 |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 7 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 8 |
1 6 7
|
sylancr |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 9 |
|
ffn |
|- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
| 10 |
|
fniunfv |
|- ( ( (,) o. F ) Fn NN -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
| 11 |
8 9 10
|
3syl |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
| 12 |
11
|
sseq2d |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 13 |
12
|
adantl |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 14 |
|
dfss3 |
|- ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A z e. U_ n e. NN ( ( (,) o. F ) ` n ) ) |
| 15 |
|
ssel2 |
|- ( ( A C_ RR /\ z e. A ) -> z e. RR ) |
| 16 |
|
eliun |
|- ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN z e. ( ( (,) o. F ) ` n ) ) |
| 17 |
|
rexr |
|- ( z e. RR -> z e. RR* ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> z e. RR* ) |
| 19 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 20 |
|
ffvelcdm |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 21 |
20
|
elin2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) |
| 22 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 23 |
21 22
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 24 |
23
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 25 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 26 |
24 25
|
eqtr4di |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 27 |
19 26
|
eqtrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 28 |
27
|
eleq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
| 29 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 30 |
|
rexr |
|- ( ( 1st ` ( F ` n ) ) e. RR -> ( 1st ` ( F ` n ) ) e. RR* ) |
| 31 |
|
rexr |
|- ( ( 2nd ` ( F ` n ) ) e. RR -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 32 |
|
elioo1 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR* /\ ( 2nd ` ( F ` n ) ) e. RR* ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 33 |
30 31 32
|
syl2an |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 34 |
|
3anass |
|- ( ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 35 |
33 34
|
bitrdi |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 36 |
35
|
3adant3 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 37 |
29 36
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 38 |
28 37
|
bitrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 39 |
38
|
adantll |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 40 |
18 39
|
mpbirand |
|- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 41 |
40
|
rexbidva |
|- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( E. n e. NN z e. ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 42 |
16 41
|
bitrid |
|- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 43 |
15 42
|
sylan |
|- ( ( ( A C_ RR /\ z e. A ) /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 44 |
43
|
an32s |
|- ( ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ z e. A ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 45 |
44
|
ralbidva |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A. z e. A z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 46 |
14 45
|
bitrid |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 47 |
13 46
|
bitr3d |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |