| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolfs2.1 |
|- G = ( ( abs o. - ) o. F ) |
| 2 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 3 |
|
ovolioo |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 5 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
| 6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 7 |
5 6
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 |
|
ffvelcdm |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 9 |
7 8
|
sselid |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR* X. RR* ) ) |
| 10 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR* X. RR* ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 11 |
9 10
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 12 |
11
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 13 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 14 |
12 13
|
eqtr4di |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 15 |
14
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( (,) ` ( F ` n ) ) ) = ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
| 16 |
1
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 17 |
4 15 16
|
3eqtr4rd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
| 18 |
17
|
mpteq2dva |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( n e. NN |-> ( G ` n ) ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
| 19 |
1
|
ovolfsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |
| 20 |
19
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( n e. NN |-> ( G ` n ) ) ) |
| 21 |
|
id |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 22 |
21
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F = ( n e. NN |-> ( F ` n ) ) ) |
| 23 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 24 |
23
|
a1i |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) : ( RR* X. RR* ) --> ~P RR ) |
| 25 |
24
|
ffvelcdmda |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. ( RR* X. RR* ) ) -> ( (,) ` x ) e. ~P RR ) |
| 26 |
24
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) = ( x e. ( RR* X. RR* ) |-> ( (,) ` x ) ) ) |
| 27 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
| 28 |
27
|
a1i |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* : ~P RR --> ( 0 [,] +oo ) ) |
| 29 |
28
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* = ( y e. ~P RR |-> ( vol* ` y ) ) ) |
| 30 |
|
fveq2 |
|- ( y = ( (,) ` x ) -> ( vol* ` y ) = ( vol* ` ( (,) ` x ) ) ) |
| 31 |
25 26 29 30
|
fmptco |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( vol* o. (,) ) = ( x e. ( RR* X. RR* ) |-> ( vol* ` ( (,) ` x ) ) ) ) |
| 32 |
|
2fveq3 |
|- ( x = ( F ` n ) -> ( vol* ` ( (,) ` x ) ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
| 33 |
9 22 31 32
|
fmptco |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( vol* o. (,) ) o. F ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
| 34 |
18 20 33
|
3eqtr4d |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( ( vol* o. (,) ) o. F ) ) |