Step |
Hyp |
Ref |
Expression |
1 |
|
ovolfs2.1 |
|- G = ( ( abs o. - ) o. F ) |
2 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
3 |
|
ovolioo |
|- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
4 |
2 3
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
5 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
7 |
5 6
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
8 |
|
ffvelrn |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
9 |
7 8
|
sselid |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR* X. RR* ) ) |
10 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR* X. RR* ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
11 |
9 10
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
12 |
11
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
13 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
14 |
12 13
|
eqtr4di |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
15 |
14
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( vol* ` ( (,) ` ( F ` n ) ) ) = ( vol* ` ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
16 |
1
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
17 |
4 15 16
|
3eqtr4rd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( G ` n ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
18 |
17
|
mpteq2dva |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( n e. NN |-> ( G ` n ) ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
19 |
1
|
ovolfsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |
20 |
19
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( n e. NN |-> ( G ` n ) ) ) |
21 |
|
id |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
22 |
21
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F = ( n e. NN |-> ( F ` n ) ) ) |
23 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
24 |
23
|
a1i |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) : ( RR* X. RR* ) --> ~P RR ) |
25 |
24
|
ffvelrnda |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. ( RR* X. RR* ) ) -> ( (,) ` x ) e. ~P RR ) |
26 |
24
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> (,) = ( x e. ( RR* X. RR* ) |-> ( (,) ` x ) ) ) |
27 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
28 |
27
|
a1i |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* : ~P RR --> ( 0 [,] +oo ) ) |
29 |
28
|
feqmptd |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> vol* = ( y e. ~P RR |-> ( vol* ` y ) ) ) |
30 |
|
fveq2 |
|- ( y = ( (,) ` x ) -> ( vol* ` y ) = ( vol* ` ( (,) ` x ) ) ) |
31 |
25 26 29 30
|
fmptco |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( vol* o. (,) ) = ( x e. ( RR* X. RR* ) |-> ( vol* ` ( (,) ` x ) ) ) ) |
32 |
|
2fveq3 |
|- ( x = ( F ` n ) -> ( vol* ` ( (,) ` x ) ) = ( vol* ` ( (,) ` ( F ` n ) ) ) ) |
33 |
9 22 31 32
|
fmptco |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( vol* o. (,) ) o. F ) = ( n e. NN |-> ( vol* ` ( (,) ` ( F ` n ) ) ) ) ) |
34 |
18 20 33
|
3eqtr4d |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G = ( ( vol* o. (,) ) o. F ) ) |