Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
2 |
1
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
3 |
|
ovolcl |
|- ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* ) |
4 |
2 3
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR* ) |
5 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
6 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR ) |
7 |
5 6
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
8 |
7
|
rexrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR* ) |
9 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
10 |
|
eqeq1 |
|- ( m = n -> ( m = 1 <-> n = 1 ) ) |
11 |
10
|
ifbid |
|- ( m = n -> if ( m = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
12 |
11
|
cbvmptv |
|- ( m e. NN |-> if ( m = 1 , <. A , B >. , <. 0 , 0 >. ) ) = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
13 |
6 5 9 12
|
ovolicc1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |
14 |
|
eqeq1 |
|- ( z = y -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <-> y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
15 |
14
|
anbi2d |
|- ( z = y -> ( ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
16 |
15
|
rexbidv |
|- ( z = y -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
17 |
16
|
cbvrabv |
|- { z e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
18 |
6 5 9 17
|
ovolicc2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) <_ ( vol* ` ( A [,] B ) ) ) |
19 |
4 8 13 18
|
xrletrid |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |