| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ovolicc.1 | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							ovolicc.2 | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							ovolicc.3 | 
							 |-  ( ph -> A <_ B )  | 
						
						
							| 4 | 
							
								
							 | 
							ovolicc1.4 | 
							 |-  G = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iccssre | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							syl2anc | 
							 |-  ( ph -> ( A [,] B ) C_ RR )  | 
						
						
							| 7 | 
							
								
							 | 
							ovolcl | 
							 |-  ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( ph -> ( vol* ` ( A [,] B ) ) e. RR* )  | 
						
						
							| 9 | 
							
								
							 | 
							df-br | 
							 |-  ( A <_ B <-> <. A , B >. e. <_ )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							sylib | 
							 |-  ( ph -> <. A , B >. e. <_ )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							opelxpd | 
							 |-  ( ph -> <. A , B >. e. ( RR X. RR ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							elind | 
							 |-  ( ph -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ n e. NN ) -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							0le0 | 
							 |-  0 <_ 0  | 
						
						
							| 15 | 
							
								
							 | 
							df-br | 
							 |-  ( 0 <_ 0 <-> <. 0 , 0 >. e. <_ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpbi | 
							 |-  <. 0 , 0 >. e. <_  | 
						
						
							| 17 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 18 | 
							
								
							 | 
							opelxpi | 
							 |-  ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) )  | 
						
						
							| 19 | 
							
								17 17 18
							 | 
							mp2an | 
							 |-  <. 0 , 0 >. e. ( RR X. RR )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							elini | 
							 |-  <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) )  | 
						
						
							| 21 | 
							
								
							 | 
							ifcl | 
							 |-  ( ( <. A , B >. e. ( <_ i^i ( RR X. RR ) ) /\ <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 22 | 
							
								13 20 21
							 | 
							sylancl | 
							 |-  ( ( ph /\ n e. NN ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 23 | 
							
								22 4
							 | 
							fmptd | 
							 |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ovolsf | 
							 |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							syl | 
							 |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							frnd | 
							 |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) )  | 
						
						
							| 29 | 
							
								
							 | 
							icossxr | 
							 |-  ( 0 [,) +oo ) C_ RR*  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sstrdi | 
							 |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* )  | 
						
						
							| 31 | 
							
								
							 | 
							supxrcl | 
							 |-  ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl | 
							 |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* )  | 
						
						
							| 33 | 
							
								2 1
							 | 
							resubcld | 
							 |-  ( ph -> ( B - A ) e. RR )  | 
						
						
							| 34 | 
							
								33
							 | 
							rexrd | 
							 |-  ( ph -> ( B - A ) e. RR* )  | 
						
						
							| 35 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 36 | 
							
								35
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> 1 e. NN )  | 
						
						
							| 37 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A )  | 
						
						
							| 38 | 
							
								1 2 37
							 | 
							syl2anc | 
							 |-  ( ph -> ( 1st ` <. A , B >. ) = A )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) = A )  | 
						
						
							| 40 | 
							
								
							 | 
							elicc2 | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) )  | 
						
						
							| 41 | 
							
								1 2 40
							 | 
							syl2anc | 
							 |-  ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							biimpa | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							simp2d | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							eqbrtrd | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) <_ x )  | 
						
						
							| 45 | 
							
								42
							 | 
							simp3d | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B )  | 
						
						
							| 46 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B )  | 
						
						
							| 47 | 
							
								1 2 46
							 | 
							syl2anc | 
							 |-  ( ph -> ( 2nd ` <. A , B >. ) = B )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 2nd ` <. A , B >. ) = B )  | 
						
						
							| 49 | 
							
								45 48
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ ( 2nd ` <. A , B >. ) )  | 
						
						
							| 50 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = 1 -> ( G ` n ) = ( G ` 1 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							iftrue | 
							 |-  ( n = 1 -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = <. A , B >. )  | 
						
						
							| 52 | 
							
								
							 | 
							opex | 
							 |-  <. A , B >. e. _V  | 
						
						
							| 53 | 
							
								51 4 52
							 | 
							fvmpt | 
							 |-  ( 1 e. NN -> ( G ` 1 ) = <. A , B >. )  | 
						
						
							| 54 | 
							
								35 53
							 | 
							ax-mp | 
							 |-  ( G ` 1 ) = <. A , B >.  | 
						
						
							| 55 | 
							
								50 54
							 | 
							eqtrdi | 
							 |-  ( n = 1 -> ( G ` n ) = <. A , B >. )  | 
						
						
							| 56 | 
							
								55
							 | 
							fveq2d | 
							 |-  ( n = 1 -> ( 1st ` ( G ` n ) ) = ( 1st ` <. A , B >. ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							breq1d | 
							 |-  ( n = 1 -> ( ( 1st ` ( G ` n ) ) <_ x <-> ( 1st ` <. A , B >. ) <_ x ) )  | 
						
						
							| 58 | 
							
								55
							 | 
							fveq2d | 
							 |-  ( n = 1 -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. A , B >. ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							breq2d | 
							 |-  ( n = 1 -> ( x <_ ( 2nd ` ( G ` n ) ) <-> x <_ ( 2nd ` <. A , B >. ) ) )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							anbi12d | 
							 |-  ( n = 1 -> ( ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) <-> ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							rspcev | 
							 |-  ( ( 1 e. NN /\ ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) )  | 
						
						
							| 62 | 
							
								36 44 49 61
							 | 
							syl12anc | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							ovolficc | 
							 |-  ( ( ( A [,] B ) C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) )  | 
						
						
							| 65 | 
							
								6 23 64
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							mpbird | 
							 |-  ( ph -> ( A [,] B ) C_ U. ran ( [,] o. G ) )  | 
						
						
							| 67 | 
							
								25
							 | 
							ovollb2 | 
							 |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A [,] B ) C_ U. ran ( [,] o. G ) ) -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) )  | 
						
						
							| 68 | 
							
								23 66 67
							 | 
							syl2anc | 
							 |-  ( ph -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) )  | 
						
						
							| 69 | 
							
								
							 | 
							addrid | 
							 |-  ( k e. CC -> ( k + 0 ) = k )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. CC ) -> ( k + 0 ) = k )  | 
						
						
							| 71 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 72 | 
							
								35 71
							 | 
							eleqtri | 
							 |-  1 e. ( ZZ>= ` 1 )  | 
						
						
							| 73 | 
							
								72
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. NN ) -> 1 e. ( ZZ>= ` 1 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. NN ) -> x e. NN )  | 
						
						
							| 75 | 
							
								74 71
							 | 
							eleqtrdi | 
							 |-  ( ( ph /\ x e. NN ) -> x e. ( ZZ>= ` 1 ) )  | 
						
						
							| 76 | 
							
								
							 | 
							rge0ssre | 
							 |-  ( 0 [,) +oo ) C_ RR  | 
						
						
							| 77 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. NN ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) )  | 
						
						
							| 78 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) )  | 
						
						
							| 79 | 
							
								77 35 78
							 | 
							sylancl | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) )  | 
						
						
							| 80 | 
							
								76 79
							 | 
							sselid | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. RR )  | 
						
						
							| 81 | 
							
								80
							 | 
							recnd | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. CC )  | 
						
						
							| 82 | 
							
								23
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							elfzuz | 
							 |-  ( k e. ( ( 1 + 1 ) ... x ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							df-2 | 
							 |-  2 = ( 1 + 1 )  | 
						
						
							| 86 | 
							
								85
							 | 
							fveq2i | 
							 |-  ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) )  | 
						
						
							| 87 | 
							
								84 86
							 | 
							eleqtrrdi | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` 2 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							eluz2nn | 
							 |-  ( k e. ( ZZ>= ` 2 ) -> k e. NN )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. NN )  | 
						
						
							| 90 | 
							
								24
							 | 
							ovolfsval | 
							 |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) )  | 
						
						
							| 91 | 
							
								82 89 90
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( n = k -> ( n = 1 <-> k = 1 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							ifbid | 
							 |-  ( n = k -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) )  | 
						
						
							| 94 | 
							
								
							 | 
							opex | 
							 |-  <. 0 , 0 >. e. _V  | 
						
						
							| 95 | 
							
								52 94
							 | 
							ifex | 
							 |-  if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) e. _V  | 
						
						
							| 96 | 
							
								93 4 95
							 | 
							fvmpt | 
							 |-  ( k e. NN -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) )  | 
						
						
							| 97 | 
							
								89 96
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) )  | 
						
						
							| 98 | 
							
								
							 | 
							eluz2b3 | 
							 |-  ( k e. ( ZZ>= ` 2 ) <-> ( k e. NN /\ k =/= 1 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							simprbi | 
							 |-  ( k e. ( ZZ>= ` 2 ) -> k =/= 1 )  | 
						
						
							| 100 | 
							
								87 99
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k =/= 1 )  | 
						
						
							| 101 | 
							
								100
							 | 
							neneqd | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> -. k = 1 )  | 
						
						
							| 102 | 
							
								101
							 | 
							iffalsed | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) = <. 0 , 0 >. )  | 
						
						
							| 103 | 
							
								97 102
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = <. 0 , 0 >. )  | 
						
						
							| 104 | 
							
								103
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` <. 0 , 0 >. ) )  | 
						
						
							| 105 | 
							
								
							 | 
							c0ex | 
							 |-  0 e. _V  | 
						
						
							| 106 | 
							
								105 105
							 | 
							op2nd | 
							 |-  ( 2nd ` <. 0 , 0 >. ) = 0  | 
						
						
							| 107 | 
							
								104 106
							 | 
							eqtrdi | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = 0 )  | 
						
						
							| 108 | 
							
								103
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = ( 1st ` <. 0 , 0 >. ) )  | 
						
						
							| 109 | 
							
								105 105
							 | 
							op1st | 
							 |-  ( 1st ` <. 0 , 0 >. ) = 0  | 
						
						
							| 110 | 
							
								108 109
							 | 
							eqtrdi | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = 0 )  | 
						
						
							| 111 | 
							
								107 110
							 | 
							oveq12d | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = ( 0 - 0 ) )  | 
						
						
							| 112 | 
							
								
							 | 
							0m0e0 | 
							 |-  ( 0 - 0 ) = 0  | 
						
						
							| 113 | 
							
								111 112
							 | 
							eqtrdi | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = 0 )  | 
						
						
							| 114 | 
							
								91 113
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = 0 )  | 
						
						
							| 115 | 
							
								70 73 75 81 114
							 | 
							seqid2 | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) )  | 
						
						
							| 116 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 117 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 118 | 
							
								24
							 | 
							ovolfsval | 
							 |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) )  | 
						
						
							| 119 | 
							
								117 35 118
							 | 
							sylancl | 
							 |-  ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) )  | 
						
						
							| 120 | 
							
								54
							 | 
							fveq2i | 
							 |-  ( 2nd ` ( G ` 1 ) ) = ( 2nd ` <. A , B >. )  | 
						
						
							| 121 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. NN ) -> ( 2nd ` <. A , B >. ) = B )  | 
						
						
							| 122 | 
							
								120 121
							 | 
							eqtrid | 
							 |-  ( ( ph /\ x e. NN ) -> ( 2nd ` ( G ` 1 ) ) = B )  | 
						
						
							| 123 | 
							
								54
							 | 
							fveq2i | 
							 |-  ( 1st ` ( G ` 1 ) ) = ( 1st ` <. A , B >. )  | 
						
						
							| 124 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. NN ) -> ( 1st ` <. A , B >. ) = A )  | 
						
						
							| 125 | 
							
								123 124
							 | 
							eqtrid | 
							 |-  ( ( ph /\ x e. NN ) -> ( 1st ` ( G ` 1 ) ) = A )  | 
						
						
							| 126 | 
							
								122 125
							 | 
							oveq12d | 
							 |-  ( ( ph /\ x e. NN ) -> ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) = ( B - A ) )  | 
						
						
							| 127 | 
							
								119 126
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( B - A ) )  | 
						
						
							| 128 | 
							
								116 127
							 | 
							seq1i | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( B - A ) )  | 
						
						
							| 129 | 
							
								115 128
							 | 
							eqtr3d | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) = ( B - A ) )  | 
						
						
							| 130 | 
							
								33
							 | 
							leidd | 
							 |-  ( ph -> ( B - A ) <_ ( B - A ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. NN ) -> ( B - A ) <_ ( B - A ) )  | 
						
						
							| 132 | 
							
								129 131
							 | 
							eqbrtrd | 
							 |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) )  | 
						
						
							| 134 | 
							
								27
							 | 
							ffnd | 
							 |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN )  | 
						
						
							| 135 | 
							
								
							 | 
							breq1 | 
							 |-  ( z = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) -> ( z <_ ( B - A ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							ralrn | 
							 |-  ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) )  | 
						
						
							| 137 | 
							
								134 136
							 | 
							syl | 
							 |-  ( ph -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) )  | 
						
						
							| 138 | 
							
								133 137
							 | 
							mpbird | 
							 |-  ( ph -> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) )  | 
						
						
							| 139 | 
							
								
							 | 
							supxrleub | 
							 |-  ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( B - A ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) )  | 
						
						
							| 140 | 
							
								30 34 139
							 | 
							syl2anc | 
							 |-  ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) )  | 
						
						
							| 141 | 
							
								138 140
							 | 
							mpbird | 
							 |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) )  | 
						
						
							| 142 | 
							
								8 32 34 68 141
							 | 
							xrletrd | 
							 |-  ( ph -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) )  |