| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ovolicc.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ovolicc.3 |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | ovolicc1.4 |  |-  G = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) | 
						
							| 5 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 6 | 1 2 5 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 7 |  | ovolcl |  |-  ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( vol* ` ( A [,] B ) ) e. RR* ) | 
						
							| 9 |  | df-br |  |-  ( A <_ B <-> <. A , B >. e. <_ ) | 
						
							| 10 | 3 9 | sylib |  |-  ( ph -> <. A , B >. e. <_ ) | 
						
							| 11 | 1 2 | opelxpd |  |-  ( ph -> <. A , B >. e. ( RR X. RR ) ) | 
						
							| 12 | 10 11 | elind |  |-  ( ph -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ n e. NN ) -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 14 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 15 |  | df-br |  |-  ( 0 <_ 0 <-> <. 0 , 0 >. e. <_ ) | 
						
							| 16 | 14 15 | mpbi |  |-  <. 0 , 0 >. e. <_ | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 |  | opelxpi |  |-  ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) | 
						
							| 19 | 17 17 18 | mp2an |  |-  <. 0 , 0 >. e. ( RR X. RR ) | 
						
							| 20 | 16 19 | elini |  |-  <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) | 
						
							| 21 |  | ifcl |  |-  ( ( <. A , B >. e. ( <_ i^i ( RR X. RR ) ) /\ <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 22 | 13 20 21 | sylancl |  |-  ( ( ph /\ n e. NN ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 23 | 22 4 | fmptd |  |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 24 |  | eqid |  |-  ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) | 
						
							| 25 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) | 
						
							| 26 | 24 25 | ovolsf |  |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 27 | 23 26 | syl |  |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 28 | 27 | frnd |  |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) | 
						
							| 29 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 30 | 28 29 | sstrdi |  |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) | 
						
							| 31 |  | supxrcl |  |-  ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) | 
						
							| 33 | 2 1 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 34 | 33 | rexrd |  |-  ( ph -> ( B - A ) e. RR* ) | 
						
							| 35 |  | 1nn |  |-  1 e. NN | 
						
							| 36 | 35 | a1i |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> 1 e. NN ) | 
						
							| 37 |  | op1stg |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 38 | 1 2 37 | syl2anc |  |-  ( ph -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 40 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) | 
						
							| 41 | 1 2 40 | syl2anc |  |-  ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) | 
						
							| 42 | 41 | biimpa |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) | 
						
							| 43 | 42 | simp2d |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) | 
						
							| 44 | 39 43 | eqbrtrd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) <_ x ) | 
						
							| 45 | 42 | simp3d |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) | 
						
							| 46 |  | op2ndg |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B ) | 
						
							| 47 | 1 2 46 | syl2anc |  |-  ( ph -> ( 2nd ` <. A , B >. ) = B ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( 2nd ` <. A , B >. ) = B ) | 
						
							| 49 | 45 48 | breqtrrd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x <_ ( 2nd ` <. A , B >. ) ) | 
						
							| 50 |  | fveq2 |  |-  ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) | 
						
							| 51 |  | iftrue |  |-  ( n = 1 -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = <. A , B >. ) | 
						
							| 52 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 53 | 51 4 52 | fvmpt |  |-  ( 1 e. NN -> ( G ` 1 ) = <. A , B >. ) | 
						
							| 54 | 35 53 | ax-mp |  |-  ( G ` 1 ) = <. A , B >. | 
						
							| 55 | 50 54 | eqtrdi |  |-  ( n = 1 -> ( G ` n ) = <. A , B >. ) | 
						
							| 56 | 55 | fveq2d |  |-  ( n = 1 -> ( 1st ` ( G ` n ) ) = ( 1st ` <. A , B >. ) ) | 
						
							| 57 | 56 | breq1d |  |-  ( n = 1 -> ( ( 1st ` ( G ` n ) ) <_ x <-> ( 1st ` <. A , B >. ) <_ x ) ) | 
						
							| 58 | 55 | fveq2d |  |-  ( n = 1 -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. A , B >. ) ) | 
						
							| 59 | 58 | breq2d |  |-  ( n = 1 -> ( x <_ ( 2nd ` ( G ` n ) ) <-> x <_ ( 2nd ` <. A , B >. ) ) ) | 
						
							| 60 | 57 59 | anbi12d |  |-  ( n = 1 -> ( ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) <-> ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) ) | 
						
							| 61 | 60 | rspcev |  |-  ( ( 1 e. NN /\ ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 62 | 36 44 49 61 | syl12anc |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ph -> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 64 |  | ovolficc |  |-  ( ( ( A [,] B ) C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 65 | 6 23 64 | syl2anc |  |-  ( ph -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 66 | 63 65 | mpbird |  |-  ( ph -> ( A [,] B ) C_ U. ran ( [,] o. G ) ) | 
						
							| 67 | 25 | ovollb2 |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A [,] B ) C_ U. ran ( [,] o. G ) ) -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) | 
						
							| 68 | 23 66 67 | syl2anc |  |-  ( ph -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) | 
						
							| 69 |  | addrid |  |-  ( k e. CC -> ( k + 0 ) = k ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k e. CC ) -> ( k + 0 ) = k ) | 
						
							| 71 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 72 | 35 71 | eleqtri |  |-  1 e. ( ZZ>= ` 1 ) | 
						
							| 73 | 72 | a1i |  |-  ( ( ph /\ x e. NN ) -> 1 e. ( ZZ>= ` 1 ) ) | 
						
							| 74 |  | simpr |  |-  ( ( ph /\ x e. NN ) -> x e. NN ) | 
						
							| 75 | 74 71 | eleqtrdi |  |-  ( ( ph /\ x e. NN ) -> x e. ( ZZ>= ` 1 ) ) | 
						
							| 76 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 77 | 27 | adantr |  |-  ( ( ph /\ x e. NN ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 78 |  | ffvelcdm |  |-  ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) | 
						
							| 79 | 77 35 78 | sylancl |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) | 
						
							| 80 | 76 79 | sselid |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. RR ) | 
						
							| 81 | 80 | recnd |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. CC ) | 
						
							| 82 | 23 | ad2antrr |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 83 |  | elfzuz |  |-  ( k e. ( ( 1 + 1 ) ... x ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 85 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 86 | 85 | fveq2i |  |-  ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) | 
						
							| 87 | 84 86 | eleqtrrdi |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` 2 ) ) | 
						
							| 88 |  | eluz2nn |  |-  ( k e. ( ZZ>= ` 2 ) -> k e. NN ) | 
						
							| 89 | 87 88 | syl |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. NN ) | 
						
							| 90 | 24 | ovolfsval |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) | 
						
							| 91 | 82 89 90 | syl2anc |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) | 
						
							| 92 |  | eqeq1 |  |-  ( n = k -> ( n = 1 <-> k = 1 ) ) | 
						
							| 93 | 92 | ifbid |  |-  ( n = k -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) | 
						
							| 94 |  | opex |  |-  <. 0 , 0 >. e. _V | 
						
							| 95 | 52 94 | ifex |  |-  if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) e. _V | 
						
							| 96 | 93 4 95 | fvmpt |  |-  ( k e. NN -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) | 
						
							| 97 | 89 96 | syl |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) | 
						
							| 98 |  | eluz2b3 |  |-  ( k e. ( ZZ>= ` 2 ) <-> ( k e. NN /\ k =/= 1 ) ) | 
						
							| 99 | 98 | simprbi |  |-  ( k e. ( ZZ>= ` 2 ) -> k =/= 1 ) | 
						
							| 100 | 87 99 | syl |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k =/= 1 ) | 
						
							| 101 | 100 | neneqd |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> -. k = 1 ) | 
						
							| 102 | 101 | iffalsed |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) = <. 0 , 0 >. ) | 
						
							| 103 | 97 102 | eqtrd |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = <. 0 , 0 >. ) | 
						
							| 104 | 103 | fveq2d |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` <. 0 , 0 >. ) ) | 
						
							| 105 |  | c0ex |  |-  0 e. _V | 
						
							| 106 | 105 105 | op2nd |  |-  ( 2nd ` <. 0 , 0 >. ) = 0 | 
						
							| 107 | 104 106 | eqtrdi |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = 0 ) | 
						
							| 108 | 103 | fveq2d |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = ( 1st ` <. 0 , 0 >. ) ) | 
						
							| 109 | 105 105 | op1st |  |-  ( 1st ` <. 0 , 0 >. ) = 0 | 
						
							| 110 | 108 109 | eqtrdi |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = 0 ) | 
						
							| 111 | 107 110 | oveq12d |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = ( 0 - 0 ) ) | 
						
							| 112 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 113 | 111 112 | eqtrdi |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = 0 ) | 
						
							| 114 | 91 113 | eqtrd |  |-  ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = 0 ) | 
						
							| 115 | 70 73 75 81 114 | seqid2 |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) ) | 
						
							| 116 |  | 1z |  |-  1 e. ZZ | 
						
							| 117 | 23 | adantr |  |-  ( ( ph /\ x e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 118 | 24 | ovolfsval |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) | 
						
							| 119 | 117 35 118 | sylancl |  |-  ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) | 
						
							| 120 | 54 | fveq2i |  |-  ( 2nd ` ( G ` 1 ) ) = ( 2nd ` <. A , B >. ) | 
						
							| 121 | 47 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( 2nd ` <. A , B >. ) = B ) | 
						
							| 122 | 120 121 | eqtrid |  |-  ( ( ph /\ x e. NN ) -> ( 2nd ` ( G ` 1 ) ) = B ) | 
						
							| 123 | 54 | fveq2i |  |-  ( 1st ` ( G ` 1 ) ) = ( 1st ` <. A , B >. ) | 
						
							| 124 | 38 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 125 | 123 124 | eqtrid |  |-  ( ( ph /\ x e. NN ) -> ( 1st ` ( G ` 1 ) ) = A ) | 
						
							| 126 | 122 125 | oveq12d |  |-  ( ( ph /\ x e. NN ) -> ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) = ( B - A ) ) | 
						
							| 127 | 119 126 | eqtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( B - A ) ) | 
						
							| 128 | 116 127 | seq1i |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( B - A ) ) | 
						
							| 129 | 115 128 | eqtr3d |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) = ( B - A ) ) | 
						
							| 130 | 33 | leidd |  |-  ( ph -> ( B - A ) <_ ( B - A ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( B - A ) <_ ( B - A ) ) | 
						
							| 132 | 129 131 | eqbrtrd |  |-  ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) | 
						
							| 133 | 132 | ralrimiva |  |-  ( ph -> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) | 
						
							| 134 | 27 | ffnd |  |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) | 
						
							| 135 |  | breq1 |  |-  ( z = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) -> ( z <_ ( B - A ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) | 
						
							| 136 | 135 | ralrn |  |-  ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) | 
						
							| 137 | 134 136 | syl |  |-  ( ph -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) | 
						
							| 138 | 133 137 | mpbird |  |-  ( ph -> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) | 
						
							| 139 |  | supxrleub |  |-  ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( B - A ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) | 
						
							| 140 | 30 34 139 | syl2anc |  |-  ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) | 
						
							| 141 | 138 140 | mpbird |  |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) ) | 
						
							| 142 | 8 32 34 68 141 | xrletrd |  |-  ( ph -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |