Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
4 |
|
ovolicc2.4 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
5 |
|
ovolicc2.5 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
6 |
|
ovolicc2.6 |
|- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
7 |
|
ovolicc2.7 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
8 |
|
ovolicc2.8 |
|- ( ph -> G : U --> NN ) |
9 |
|
ovolicc2.9 |
|- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
10 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
11 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
12 |
5 10 11
|
sylancl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
13 |
8
|
ffvelrnda |
|- ( ( ph /\ X e. U ) -> ( G ` X ) e. NN ) |
14 |
|
fvco3 |
|- ( ( F : NN --> ( RR X. RR ) /\ ( G ` X ) e. NN ) -> ( ( (,) o. F ) ` ( G ` X ) ) = ( (,) ` ( F ` ( G ` X ) ) ) ) |
15 |
12 13 14
|
syl2an2r |
|- ( ( ph /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = ( (,) ` ( F ` ( G ` X ) ) ) ) |
16 |
9
|
ralrimiva |
|- ( ph -> A. t e. U ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
17 |
|
2fveq3 |
|- ( t = X -> ( ( (,) o. F ) ` ( G ` t ) ) = ( ( (,) o. F ) ` ( G ` X ) ) ) |
18 |
|
id |
|- ( t = X -> t = X ) |
19 |
17 18
|
eqeq12d |
|- ( t = X -> ( ( ( (,) o. F ) ` ( G ` t ) ) = t <-> ( ( (,) o. F ) ` ( G ` X ) ) = X ) ) |
20 |
19
|
rspccva |
|- ( ( A. t e. U ( ( (,) o. F ) ` ( G ` t ) ) = t /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = X ) |
21 |
16 20
|
sylan |
|- ( ( ph /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = X ) |
22 |
12
|
adantr |
|- ( ( ph /\ X e. U ) -> F : NN --> ( RR X. RR ) ) |
23 |
22 13
|
ffvelrnd |
|- ( ( ph /\ X e. U ) -> ( F ` ( G ` X ) ) e. ( RR X. RR ) ) |
24 |
|
1st2nd2 |
|- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( F ` ( G ` X ) ) = <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
25 |
23 24
|
syl |
|- ( ( ph /\ X e. U ) -> ( F ` ( G ` X ) ) = <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
26 |
25
|
fveq2d |
|- ( ( ph /\ X e. U ) -> ( (,) ` ( F ` ( G ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) ) |
27 |
|
df-ov |
|- ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
28 |
26 27
|
eqtr4di |
|- ( ( ph /\ X e. U ) -> ( (,) ` ( F ` ( G ` X ) ) ) = ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) |
29 |
15 21 28
|
3eqtr3d |
|- ( ( ph /\ X e. U ) -> X = ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) |
30 |
29
|
eleq2d |
|- ( ( ph /\ X e. U ) -> ( P e. X <-> P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
31 |
|
xp1st |
|- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR ) |
32 |
23 31
|
syl |
|- ( ( ph /\ X e. U ) -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR ) |
33 |
|
xp2nd |
|- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) |
34 |
23 33
|
syl |
|- ( ( ph /\ X e. U ) -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) |
35 |
|
rexr |
|- ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR* ) |
36 |
|
rexr |
|- ( ( 2nd ` ( F ` ( G ` X ) ) ) e. RR -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR* ) |
37 |
|
elioo2 |
|- ( ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR* /\ ( 2nd ` ( F ` ( G ` X ) ) ) e. RR* ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
38 |
35 36 37
|
syl2an |
|- ( ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR /\ ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
39 |
32 34 38
|
syl2anc |
|- ( ( ph /\ X e. U ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
40 |
30 39
|
bitrd |
|- ( ( ph /\ X e. U ) -> ( P e. X <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |