Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
4 |
|
ovolicc2.4 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
5 |
|
ovolicc2.5 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
6 |
|
ovolicc2.6 |
|- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
7 |
|
ovolicc2.7 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
8 |
|
ovolicc2.8 |
|- ( ph -> G : U --> NN ) |
9 |
|
ovolicc2.9 |
|- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
10 |
|
ovolicc2.10 |
|- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
11 |
|
ovolicc2.11 |
|- ( ph -> H : T --> T ) |
12 |
|
ovolicc2.12 |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
13 |
|
ovolicc2.13 |
|- ( ph -> A e. C ) |
14 |
|
ovolicc2.14 |
|- ( ph -> C e. T ) |
15 |
|
ovolicc2.15 |
|- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
16 |
|
ovolicc2.16 |
|- W = { n e. NN | B e. ( K ` n ) } |
17 |
2
|
adantr |
|- ( ( ph /\ N e. NN ) -> B e. RR ) |
18 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
19 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
20 |
5 18 19
|
sylancl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ N e. NN ) -> F : NN --> ( RR X. RR ) ) |
22 |
8
|
adantr |
|- ( ( ph /\ N e. NN ) -> G : U --> NN ) |
23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
24 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
25 |
23 15 24 14 11
|
algrf |
|- ( ph -> K : NN --> T ) |
26 |
25
|
ffvelrnda |
|- ( ( ph /\ N e. NN ) -> ( K ` N ) e. T ) |
27 |
|
ineq1 |
|- ( u = ( K ` N ) -> ( u i^i ( A [,] B ) ) = ( ( K ` N ) i^i ( A [,] B ) ) ) |
28 |
27
|
neeq1d |
|- ( u = ( K ` N ) -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
29 |
28 10
|
elrab2 |
|- ( ( K ` N ) e. T <-> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
30 |
26 29
|
sylib |
|- ( ( ph /\ N e. NN ) -> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
31 |
30
|
simpld |
|- ( ( ph /\ N e. NN ) -> ( K ` N ) e. U ) |
32 |
22 31
|
ffvelrnd |
|- ( ( ph /\ N e. NN ) -> ( G ` ( K ` N ) ) e. NN ) |
33 |
21 32
|
ffvelrnd |
|- ( ( ph /\ N e. NN ) -> ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) ) |
34 |
|
xp2nd |
|- ( ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
35 |
33 34
|
syl |
|- ( ( ph /\ N e. NN ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
36 |
17 35
|
ltnled |
|- ( ( ph /\ N e. NN ) -> ( B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <-> -. ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) ) |
37 |
|
simprl |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> N e. NN ) |
38 |
2
|
adantr |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B e. RR ) |
39 |
30
|
adantrr |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
40 |
39
|
simprd |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) |
41 |
|
n0 |
|- ( ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) <-> E. x x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
42 |
40 41
|
sylib |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> E. x x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
43 |
|
xp1st |
|- ( ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
44 |
33 43
|
syl |
|- ( ( ph /\ N e. NN ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
45 |
44
|
adantrr |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
46 |
45
|
adantr |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
47 |
|
simpr |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
48 |
|
elin |
|- ( x e. ( ( K ` N ) i^i ( A [,] B ) ) <-> ( x e. ( K ` N ) /\ x e. ( A [,] B ) ) ) |
49 |
47 48
|
sylib |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( K ` N ) /\ x e. ( A [,] B ) ) ) |
50 |
49
|
simprd |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( A [,] B ) ) |
51 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
52 |
1 2 51
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
54 |
50 53
|
mpbid |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
55 |
54
|
simp1d |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. RR ) |
56 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> B e. RR ) |
57 |
49
|
simpld |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( K ` N ) ) |
58 |
39
|
simpld |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( K ` N ) e. U ) |
59 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` N ) e. U ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
60 |
58 59
|
syldan |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
62 |
57 61
|
mpbid |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) |
63 |
62
|
simp2d |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x ) |
64 |
54
|
simp3d |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x <_ B ) |
65 |
46 55 56 63 64
|
ltletrd |
|- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B ) |
66 |
42 65
|
exlimddv |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B ) |
67 |
|
simprr |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) |
68 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` N ) e. U ) -> ( B e. ( K ` N ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
69 |
58 68
|
syldan |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( B e. ( K ` N ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
70 |
38 66 67 69
|
mpbir3and |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B e. ( K ` N ) ) |
71 |
|
fveq2 |
|- ( n = N -> ( K ` n ) = ( K ` N ) ) |
72 |
71
|
eleq2d |
|- ( n = N -> ( B e. ( K ` n ) <-> B e. ( K ` N ) ) ) |
73 |
72 16
|
elrab2 |
|- ( N e. W <-> ( N e. NN /\ B e. ( K ` N ) ) ) |
74 |
37 70 73
|
sylanbrc |
|- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> N e. W ) |
75 |
74
|
expr |
|- ( ( ph /\ N e. NN ) -> ( B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) -> N e. W ) ) |
76 |
36 75
|
sylbird |
|- ( ( ph /\ N e. NN ) -> ( -. ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B -> N e. W ) ) |
77 |
76
|
con1d |
|- ( ( ph /\ N e. NN ) -> ( -. N e. W -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) ) |
78 |
77
|
impr |
|- ( ( ph /\ ( N e. NN /\ -. N e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) |