| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
| 4 |
|
ovolicc2.4 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
| 5 |
|
ovolicc2.5 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 6 |
|
ovolicc2.6 |
|- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
| 7 |
|
ovolicc2.7 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
| 8 |
|
ovolicc2.8 |
|- ( ph -> G : U --> NN ) |
| 9 |
|
ovolicc2.9 |
|- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
| 10 |
|
ovolicc2.10 |
|- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
| 11 |
|
ovolicc2.11 |
|- ( ph -> H : T --> T ) |
| 12 |
|
ovolicc2.12 |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
| 13 |
|
ovolicc2.13 |
|- ( ph -> A e. C ) |
| 14 |
|
ovolicc2.14 |
|- ( ph -> C e. T ) |
| 15 |
|
ovolicc2.15 |
|- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
| 16 |
|
ovolicc2.16 |
|- W = { n e. NN | B e. ( K ` n ) } |
| 17 |
|
ovolicc2.17 |
|- M = inf ( W , RR , < ) |
| 18 |
|
arch |
|- ( x e. RR -> E. z e. NN x < z ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN x < z ) |
| 20 |
|
df-ima |
|- ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) |
| 21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 22 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 23 |
21 15 22 14 11
|
algrf |
|- ( ph -> K : NN --> T ) |
| 24 |
10
|
ssrab3 |
|- T C_ U |
| 25 |
|
fss |
|- ( ( K : NN --> T /\ T C_ U ) -> K : NN --> U ) |
| 26 |
23 24 25
|
sylancl |
|- ( ph -> K : NN --> U ) |
| 27 |
|
fco |
|- ( ( G : U --> NN /\ K : NN --> U ) -> ( G o. K ) : NN --> NN ) |
| 28 |
8 26 27
|
syl2anc |
|- ( ph -> ( G o. K ) : NN --> NN ) |
| 29 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
| 30 |
|
fssres |
|- ( ( ( G o. K ) : NN --> NN /\ ( 1 ... M ) C_ NN ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
| 31 |
28 29 30
|
sylancl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
| 32 |
31
|
frnd |
|- ( ph -> ran ( ( G o. K ) |` ( 1 ... M ) ) C_ NN ) |
| 33 |
20 32
|
eqsstrid |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
| 34 |
|
nnssre |
|- NN C_ RR |
| 35 |
33 34
|
sstrdi |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
| 36 |
35
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
| 37 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ( G o. K ) " ( 1 ... M ) ) ) |
| 38 |
36 37
|
sseldd |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
| 39 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> x e. RR ) |
| 40 |
|
nnre |
|- ( z e. NN -> z e. RR ) |
| 41 |
40
|
ad2antlr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
| 42 |
|
lelttr |
|- ( ( y e. RR /\ x e. RR /\ z e. RR ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
| 43 |
38 39 41 42
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
| 44 |
43
|
ancomsd |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( x < z /\ y <_ x ) -> y < z ) ) |
| 45 |
44
|
expdimp |
|- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) /\ x < z ) -> ( y <_ x -> y < z ) ) |
| 46 |
45
|
an32s |
|- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y <_ x -> y < z ) ) |
| 47 |
46
|
ralimdva |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 48 |
47
|
impancom |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 49 |
48
|
an32s |
|- ( ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) /\ z e. NN ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 50 |
49
|
reximdva |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( E. z e. NN x < z -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 51 |
19 50
|
mpd |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
| 52 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 53 |
|
fvres |
|- ( i e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
| 55 |
|
elfznn |
|- ( i e. ( 1 ... M ) -> i e. NN ) |
| 56 |
|
fvco3 |
|- ( ( K : NN --> T /\ i e. NN ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
| 57 |
23 55 56
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
| 58 |
54 57
|
eqtrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
| 59 |
58
|
adantrr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
| 60 |
|
fvres |
|- ( j e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
| 61 |
60
|
ad2antll |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
| 62 |
|
elfznn |
|- ( j e. ( 1 ... M ) -> j e. NN ) |
| 63 |
62
|
adantl |
|- ( ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) -> j e. NN ) |
| 64 |
|
fvco3 |
|- ( ( K : NN --> T /\ j e. NN ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
| 65 |
23 63 64
|
syl2an |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
| 66 |
61 65
|
eqtrd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( G ` ( K ` j ) ) ) |
| 67 |
59 66
|
eqeq12d |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) <-> ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) ) ) |
| 68 |
|
2fveq3 |
|- ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
| 69 |
29
|
a1i |
|- ( ph -> ( 1 ... M ) C_ NN ) |
| 70 |
|
elfznn |
|- ( n e. ( 1 ... M ) -> n e. NN ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. NN ) |
| 72 |
71
|
nnred |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. RR ) |
| 73 |
16
|
ssrab3 |
|- W C_ NN |
| 74 |
73 34
|
sstri |
|- W C_ RR |
| 75 |
73 21
|
sseqtri |
|- W C_ ( ZZ>= ` 1 ) |
| 76 |
|
nnnfi |
|- -. NN e. Fin |
| 77 |
6
|
elin2d |
|- ( ph -> U e. Fin ) |
| 78 |
|
ssfi |
|- ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) |
| 79 |
77 24 78
|
sylancl |
|- ( ph -> T e. Fin ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ W = (/) ) -> T e. Fin ) |
| 81 |
23
|
adantr |
|- ( ( ph /\ W = (/) ) -> K : NN --> T ) |
| 82 |
|
2fveq3 |
|- ( ( K ` i ) = ( K ` j ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` j ) ) ) ) |
| 83 |
82
|
fveq2d |
|- ( ( K ` i ) = ( K ` j ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
| 84 |
|
simpll |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ph ) |
| 85 |
|
simprl |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. NN ) |
| 86 |
|
ral0 |
|- A. m e. (/) n <_ m |
| 87 |
|
simplr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> W = (/) ) |
| 88 |
87
|
raleqdv |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( A. m e. W n <_ m <-> A. m e. (/) n <_ m ) ) |
| 89 |
86 88
|
mpbiri |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. m e. W n <_ m ) |
| 90 |
89
|
ralrimivw |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. n e. NN A. m e. W n <_ m ) |
| 91 |
|
rabid2 |
|- ( NN = { n e. NN | A. m e. W n <_ m } <-> A. n e. NN A. m e. W n <_ m ) |
| 92 |
90 91
|
sylibr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> NN = { n e. NN | A. m e. W n <_ m } ) |
| 93 |
85 92
|
eleqtrd |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
| 94 |
|
simprr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. NN ) |
| 95 |
94 92
|
eleqtrd |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
| 96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem3 |
|- ( ( ph /\ ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 97 |
84 93 95 96
|
syl12anc |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 98 |
83 97
|
imbitrrid |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
| 99 |
98
|
ralrimivva |
|- ( ( ph /\ W = (/) ) -> A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
| 100 |
|
dff13 |
|- ( K : NN -1-1-> T <-> ( K : NN --> T /\ A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) ) |
| 101 |
81 99 100
|
sylanbrc |
|- ( ( ph /\ W = (/) ) -> K : NN -1-1-> T ) |
| 102 |
|
f1domg |
|- ( T e. Fin -> ( K : NN -1-1-> T -> NN ~<_ T ) ) |
| 103 |
80 101 102
|
sylc |
|- ( ( ph /\ W = (/) ) -> NN ~<_ T ) |
| 104 |
|
domfi |
|- ( ( T e. Fin /\ NN ~<_ T ) -> NN e. Fin ) |
| 105 |
79 103 104
|
syl2an2r |
|- ( ( ph /\ W = (/) ) -> NN e. Fin ) |
| 106 |
105
|
ex |
|- ( ph -> ( W = (/) -> NN e. Fin ) ) |
| 107 |
106
|
necon3bd |
|- ( ph -> ( -. NN e. Fin -> W =/= (/) ) ) |
| 108 |
76 107
|
mpi |
|- ( ph -> W =/= (/) ) |
| 109 |
|
infssuzcl |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ W =/= (/) ) -> inf ( W , RR , < ) e. W ) |
| 110 |
75 108 109
|
sylancr |
|- ( ph -> inf ( W , RR , < ) e. W ) |
| 111 |
17 110
|
eqeltrid |
|- ( ph -> M e. W ) |
| 112 |
74 111
|
sselid |
|- ( ph -> M e. RR ) |
| 113 |
112
|
ad2antrr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M e. RR ) |
| 114 |
74
|
sseli |
|- ( m e. W -> m e. RR ) |
| 115 |
114
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> m e. RR ) |
| 116 |
|
elfzle2 |
|- ( n e. ( 1 ... M ) -> n <_ M ) |
| 117 |
116
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ M ) |
| 118 |
|
infssuzle |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ m e. W ) -> inf ( W , RR , < ) <_ m ) |
| 119 |
75 118
|
mpan |
|- ( m e. W -> inf ( W , RR , < ) <_ m ) |
| 120 |
17 119
|
eqbrtrid |
|- ( m e. W -> M <_ m ) |
| 121 |
120
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M <_ m ) |
| 122 |
72 113 115 117 121
|
letrd |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ m ) |
| 123 |
122
|
ralrimiva |
|- ( ( ph /\ n e. ( 1 ... M ) ) -> A. m e. W n <_ m ) |
| 124 |
69 123
|
ssrabdv |
|- ( ph -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
| 126 |
|
simprl |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. ( 1 ... M ) ) |
| 127 |
125 126
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
| 128 |
|
simprr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. ( 1 ... M ) ) |
| 129 |
125 128
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
| 130 |
127 129
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) |
| 131 |
130 96
|
syldan |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 132 |
68 131
|
imbitrrid |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> i = j ) ) |
| 133 |
67 132
|
sylbid |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
| 134 |
133
|
ralrimivva |
|- ( ph -> A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
| 135 |
|
dff13 |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN <-> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN /\ A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) ) |
| 136 |
31 134 135
|
sylanbrc |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN ) |
| 137 |
|
f1f1orn |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
| 138 |
136 137
|
syl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
| 139 |
|
f1oeq3 |
|- ( ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) ) |
| 140 |
20 139
|
ax-mp |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
| 141 |
138 140
|
sylibr |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
| 142 |
|
f1ofo |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
| 143 |
141 142
|
syl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
| 144 |
|
fofi |
|- ( ( ( 1 ... M ) e. Fin /\ ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
| 145 |
52 143 144
|
syl2anc |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
| 146 |
|
fimaxre2 |
|- ( ( ( ( G o. K ) " ( 1 ... M ) ) C_ RR /\ ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
| 147 |
35 145 146
|
syl2anc |
|- ( ph -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
| 148 |
51 147
|
r19.29a |
|- ( ph -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
| 149 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 150 |
149
|
rexrd |
|- ( ph -> ( B - A ) e. RR* ) |
| 151 |
150
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR* ) |
| 152 |
|
fzfid |
|- ( ph -> ( 1 ... z ) e. Fin ) |
| 153 |
|
elfznn |
|- ( j e. ( 1 ... z ) -> j e. NN ) |
| 154 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
| 155 |
154
|
ovolfsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 156 |
5 155
|
syl |
|- ( ph -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 157 |
156
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
| 158 |
153 157
|
sylan2 |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
| 159 |
|
elrege0 |
|- ( ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
| 160 |
158 159
|
sylib |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
| 161 |
160
|
simpld |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 162 |
152 161
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 163 |
162
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 164 |
163
|
rexrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR* ) |
| 165 |
154 4
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 166 |
5 165
|
syl |
|- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 167 |
166
|
frnd |
|- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 168 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 169 |
167 168
|
sstrdi |
|- ( ph -> ran S C_ RR ) |
| 170 |
|
ressxr |
|- RR C_ RR* |
| 171 |
169 170
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
| 172 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
| 173 |
171 172
|
syl |
|- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 174 |
173
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
| 175 |
149
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR ) |
| 176 |
33
|
sselda |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> j e. NN ) |
| 177 |
168 157
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 178 |
176 177
|
syldan |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 179 |
145 178
|
fsumrecl |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 180 |
179
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 181 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
| 182 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
| 183 |
5 181 182
|
sylancl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
| 184 |
73 111
|
sselid |
|- ( ph -> M e. NN ) |
| 185 |
26 184
|
ffvelcdmd |
|- ( ph -> ( K ` M ) e. U ) |
| 186 |
8 185
|
ffvelcdmd |
|- ( ph -> ( G ` ( K ` M ) ) e. NN ) |
| 187 |
183 186
|
ffvelcdmd |
|- ( ph -> ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) ) |
| 188 |
|
xp2nd |
|- ( ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
| 189 |
187 188
|
syl |
|- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
| 190 |
24 14
|
sselid |
|- ( ph -> C e. U ) |
| 191 |
8 190
|
ffvelcdmd |
|- ( ph -> ( G ` C ) e. NN ) |
| 192 |
183 191
|
ffvelcdmd |
|- ( ph -> ( F ` ( G ` C ) ) e. ( RR X. RR ) ) |
| 193 |
|
xp1st |
|- ( ( F ` ( G ` C ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
| 194 |
192 193
|
syl |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
| 195 |
189 194
|
resubcld |
|- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) e. RR ) |
| 196 |
|
fveq2 |
|- ( j = ( G ` ( K ` i ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
| 197 |
177
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 198 |
176 197
|
syldan |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 199 |
196 52 141 58 198
|
fsumf1o |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
| 200 |
8
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> G : U --> NN ) |
| 201 |
|
ffvelcdm |
|- ( ( K : NN --> U /\ i e. NN ) -> ( K ` i ) e. U ) |
| 202 |
26 55 201
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( K ` i ) e. U ) |
| 203 |
200 202
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( K ` i ) ) e. NN ) |
| 204 |
154
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` ( K ` i ) ) e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 205 |
5 203 204
|
syl2an2r |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 206 |
205
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 207 |
183
|
adantr |
|- ( ( ph /\ i e. NN ) -> F : NN --> ( RR X. RR ) ) |
| 208 |
8
|
adantr |
|- ( ( ph /\ i e. NN ) -> G : U --> NN ) |
| 209 |
26
|
ffvelcdmda |
|- ( ( ph /\ i e. NN ) -> ( K ` i ) e. U ) |
| 210 |
208 209
|
ffvelcdmd |
|- ( ( ph /\ i e. NN ) -> ( G ` ( K ` i ) ) e. NN ) |
| 211 |
207 210
|
ffvelcdmd |
|- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
| 212 |
|
xp2nd |
|- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 213 |
211 212
|
syl |
|- ( ( ph /\ i e. NN ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 214 |
55 213
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 215 |
214
|
recnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 216 |
183
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> F : NN --> ( RR X. RR ) ) |
| 217 |
216 203
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
| 218 |
|
xp1st |
|- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 219 |
217 218
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 220 |
219
|
recnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 221 |
52 215 220
|
fsumsub |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 222 |
|
fzfid |
|- ( ph -> ( 1 ... ( M - 1 ) ) e. Fin ) |
| 223 |
|
elfznn |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i e. NN ) |
| 224 |
223 213
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 225 |
222 224
|
fsumrecl |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 226 |
225
|
recnd |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 227 |
189
|
recnd |
|- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. CC ) |
| 228 |
75 111
|
sselid |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 229 |
|
2fveq3 |
|- ( i = M -> ( G ` ( K ` i ) ) = ( G ` ( K ` M ) ) ) |
| 230 |
229
|
fveq2d |
|- ( i = M -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` M ) ) ) ) |
| 231 |
230
|
fveq2d |
|- ( i = M -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
| 232 |
228 215 231
|
fsumm1 |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) + ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
| 233 |
226 227 232
|
comraddd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 234 |
|
2fveq3 |
|- ( i = 1 -> ( G ` ( K ` i ) ) = ( G ` ( K ` 1 ) ) ) |
| 235 |
234
|
fveq2d |
|- ( i = 1 -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` 1 ) ) ) ) |
| 236 |
235
|
fveq2d |
|- ( i = 1 -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) ) |
| 237 |
228 220 236
|
fsum1p |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 238 |
21 15 22 14
|
algr0 |
|- ( ph -> ( K ` 1 ) = C ) |
| 239 |
238
|
fveq2d |
|- ( ph -> ( G ` ( K ` 1 ) ) = ( G ` C ) ) |
| 240 |
239
|
fveq2d |
|- ( ph -> ( F ` ( G ` ( K ` 1 ) ) ) = ( F ` ( G ` C ) ) ) |
| 241 |
240
|
fveq2d |
|- ( ph -> ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) = ( 1st ` ( F ` ( G ` C ) ) ) ) |
| 242 |
22
|
peano2zd |
|- ( ph -> ( 1 + 1 ) e. ZZ ) |
| 243 |
184
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 244 |
|
1z |
|- 1 e. ZZ |
| 245 |
|
fzp1ss |
|- ( 1 e. ZZ -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
| 246 |
244 245
|
mp1i |
|- ( ph -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
| 247 |
246
|
sselda |
|- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> i e. ( 1 ... M ) ) |
| 248 |
247 220
|
syldan |
|- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 249 |
|
2fveq3 |
|- ( i = ( j + 1 ) -> ( G ` ( K ` i ) ) = ( G ` ( K ` ( j + 1 ) ) ) ) |
| 250 |
249
|
fveq2d |
|- ( i = ( j + 1 ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
| 251 |
250
|
fveq2d |
|- ( i = ( j + 1 ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
| 252 |
22 242 243 248 251
|
fsumshftm |
|- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
| 253 |
|
ax-1cn |
|- 1 e. CC |
| 254 |
253 253
|
pncan3oi |
|- ( ( 1 + 1 ) - 1 ) = 1 |
| 255 |
254
|
oveq1i |
|- ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) = ( 1 ... ( M - 1 ) ) |
| 256 |
255
|
sumeq1i |
|- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
| 257 |
|
fvoveq1 |
|- ( j = i -> ( K ` ( j + 1 ) ) = ( K ` ( i + 1 ) ) ) |
| 258 |
257
|
fveq2d |
|- ( j = i -> ( G ` ( K ` ( j + 1 ) ) ) = ( G ` ( K ` ( i + 1 ) ) ) ) |
| 259 |
258
|
fveq2d |
|- ( j = i -> ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) = ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 260 |
259
|
fveq2d |
|- ( j = i -> ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
| 261 |
260
|
cbvsumv |
|- sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 262 |
256 261
|
eqtri |
|- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 263 |
252 262
|
eqtrdi |
|- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
| 264 |
241 263
|
oveq12d |
|- ( ph -> ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 265 |
237 264
|
eqtrd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 266 |
233 265
|
oveq12d |
|- ( ph -> ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 267 |
194
|
recnd |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. CC ) |
| 268 |
|
peano2nn |
|- ( i e. NN -> ( i + 1 ) e. NN ) |
| 269 |
|
ffvelcdm |
|- ( ( K : NN --> U /\ ( i + 1 ) e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
| 270 |
26 268 269
|
syl2an |
|- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
| 271 |
208 270
|
ffvelcdmd |
|- ( ( ph /\ i e. NN ) -> ( G ` ( K ` ( i + 1 ) ) ) e. NN ) |
| 272 |
207 271
|
ffvelcdmd |
|- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) ) |
| 273 |
|
xp1st |
|- ( ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 274 |
272 273
|
syl |
|- ( ( ph /\ i e. NN ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 275 |
223 274
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 276 |
222 275
|
fsumrecl |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 277 |
276
|
recnd |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. CC ) |
| 278 |
227 226 267 277
|
addsub4d |
|- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 279 |
221 266 278
|
3eqtrd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 280 |
199 206 279
|
3eqtrd |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 281 |
280 179
|
eqeltrrd |
|- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) e. RR ) |
| 282 |
|
fveq2 |
|- ( n = M -> ( K ` n ) = ( K ` M ) ) |
| 283 |
282
|
eleq2d |
|- ( n = M -> ( B e. ( K ` n ) <-> B e. ( K ` M ) ) ) |
| 284 |
283 16
|
elrab2 |
|- ( M e. W <-> ( M e. NN /\ B e. ( K ` M ) ) ) |
| 285 |
111 284
|
sylib |
|- ( ph -> ( M e. NN /\ B e. ( K ` M ) ) ) |
| 286 |
285
|
simprd |
|- ( ph -> B e. ( K ` M ) ) |
| 287 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` M ) e. U ) -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
| 288 |
185 287
|
mpdan |
|- ( ph -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
| 289 |
286 288
|
mpbid |
|- ( ph -> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
| 290 |
289
|
simp3d |
|- ( ph -> B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
| 291 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ C e. U ) -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
| 292 |
190 291
|
mpdan |
|- ( ph -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
| 293 |
13 292
|
mpbid |
|- ( ph -> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) |
| 294 |
293
|
simp2d |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) < A ) |
| 295 |
2 194 189 1 290 294
|
lt2subd |
|- ( ph -> ( B - A ) < ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
| 296 |
149 195 295
|
ltled |
|- ( ph -> ( B - A ) <_ ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
| 297 |
223
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. NN ) |
| 298 |
|
simpr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 1 ... ( M - 1 ) ) ) |
| 299 |
243
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ ) |
| 300 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
| 301 |
244 299 300
|
sylancr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
| 302 |
298 301
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) |
| 303 |
302
|
simp3d |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M ) |
| 304 |
297
|
nnred |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR ) |
| 305 |
112
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR ) |
| 306 |
304 305
|
ltnled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i < M <-> -. M <_ i ) ) |
| 307 |
303 306
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. M <_ i ) |
| 308 |
|
infssuzle |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ i e. W ) -> inf ( W , RR , < ) <_ i ) |
| 309 |
75 308
|
mpan |
|- ( i e. W -> inf ( W , RR , < ) <_ i ) |
| 310 |
17 309
|
eqbrtrid |
|- ( i e. W -> M <_ i ) |
| 311 |
307 310
|
nsyl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. i e. W ) |
| 312 |
297 311
|
jca |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. NN /\ -. i e. W ) ) |
| 313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem2 |
|- ( ( ph /\ ( i e. NN /\ -. i e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
| 314 |
312 313
|
syldan |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
| 315 |
314
|
iftrued |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 316 |
|
2fveq3 |
|- ( t = ( K ` i ) -> ( F ` ( G ` t ) ) = ( F ` ( G ` ( K ` i ) ) ) ) |
| 317 |
316
|
fveq2d |
|- ( t = ( K ` i ) -> ( 2nd ` ( F ` ( G ` t ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 318 |
317
|
breq1d |
|- ( t = ( K ` i ) -> ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) ) |
| 319 |
318 317
|
ifbieq1d |
|- ( t = ( K ` i ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) ) |
| 320 |
|
fveq2 |
|- ( t = ( K ` i ) -> ( H ` t ) = ( H ` ( K ` i ) ) ) |
| 321 |
319 320
|
eleq12d |
|- ( t = ( K ` i ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) <-> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) ) |
| 322 |
12
|
ralrimiva |
|- ( ph -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
| 323 |
322
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
| 324 |
|
ffvelcdm |
|- ( ( K : NN --> T /\ i e. NN ) -> ( K ` i ) e. T ) |
| 325 |
23 223 324
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` i ) e. T ) |
| 326 |
321 323 325
|
rspcdva |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) |
| 327 |
315 326
|
eqeltrrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( H ` ( K ` i ) ) ) |
| 328 |
21 15 22 14 11
|
algrp1 |
|- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
| 329 |
223 328
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
| 330 |
327 329
|
eleqtrrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) ) |
| 331 |
223 270
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) e. U ) |
| 332 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` ( i + 1 ) ) e. U ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 333 |
331 332
|
syldan |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 334 |
330 333
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 335 |
334
|
simp2d |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 336 |
275 224 335
|
ltled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 337 |
222 275 224 336
|
fsumle |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 338 |
225 276
|
subge0d |
|- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 339 |
337 338
|
mpbird |
|- ( ph -> 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 340 |
225 276
|
resubcld |
|- ( ph -> ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) e. RR ) |
| 341 |
195 340
|
addge01d |
|- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) ) |
| 342 |
339 341
|
mpbid |
|- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 343 |
149 195 281 296 342
|
letrd |
|- ( ph -> ( B - A ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 344 |
343 280
|
breqtrrd |
|- ( ph -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 345 |
344
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 346 |
|
fzfid |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( 1 ... z ) e. Fin ) |
| 347 |
161
|
adantlr |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 348 |
160
|
simprd |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
| 349 |
348
|
adantlr |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
| 350 |
33
|
adantr |
|- ( ( ph /\ z e. NN ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
| 351 |
350
|
sselda |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. NN ) |
| 352 |
351
|
nnred |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
| 353 |
40
|
ad2antlr |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
| 354 |
|
ltle |
|- ( ( y e. RR /\ z e. RR ) -> ( y < z -> y <_ z ) ) |
| 355 |
352 353 354
|
syl2anc |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y <_ z ) ) |
| 356 |
351 21
|
eleqtrdi |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ZZ>= ` 1 ) ) |
| 357 |
|
nnz |
|- ( z e. NN -> z e. ZZ ) |
| 358 |
357
|
ad2antlr |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. ZZ ) |
| 359 |
|
elfz5 |
|- ( ( y e. ( ZZ>= ` 1 ) /\ z e. ZZ ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
| 360 |
356 358 359
|
syl2anc |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
| 361 |
355 360
|
sylibrd |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y e. ( 1 ... z ) ) ) |
| 362 |
361
|
ralimdva |
|- ( ( ph /\ z e. NN ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) ) |
| 363 |
362
|
impr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
| 364 |
|
dfss3 |
|- ( ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) <-> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
| 365 |
363 364
|
sylibr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) ) |
| 366 |
346 347 349 365
|
fsumless |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 367 |
175 180 163 345 366
|
letrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 368 |
|
eqidd |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` j ) ) |
| 369 |
|
simprl |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. NN ) |
| 370 |
369 21
|
eleqtrdi |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. ( ZZ>= ` 1 ) ) |
| 371 |
347
|
recnd |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 372 |
368 370 371
|
fsumser |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) ) |
| 373 |
4
|
fveq1i |
|- ( S ` z ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) |
| 374 |
372 373
|
eqtr4di |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( S ` z ) ) |
| 375 |
166
|
ffnd |
|- ( ph -> S Fn NN ) |
| 376 |
|
fnfvelrn |
|- ( ( S Fn NN /\ z e. NN ) -> ( S ` z ) e. ran S ) |
| 377 |
375 369 376
|
syl2an2r |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) e. ran S ) |
| 378 |
|
supxrub |
|- ( ( ran S C_ RR* /\ ( S ` z ) e. ran S ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
| 379 |
171 377 378
|
syl2an2r |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
| 380 |
374 379
|
eqbrtrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) <_ sup ( ran S , RR* , < ) ) |
| 381 |
151 164 174 367 380
|
xrletrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| 382 |
148 381
|
rexlimddv |
|- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |