Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
4 |
|
ovolicc2.4 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
5 |
|
ovolicc2.5 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
6 |
|
ovolicc2.6 |
|- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
7 |
|
ovolicc2.7 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
8 |
|
ovolicc2.8 |
|- ( ph -> G : U --> NN ) |
9 |
|
ovolicc2.9 |
|- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
10 |
|
ovolicc2.10 |
|- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
11 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
12 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
13 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
14 |
11 12 3 13
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
15 |
7 14
|
sseldd |
|- ( ph -> A e. U. U ) |
16 |
|
eluni2 |
|- ( A e. U. U <-> E. z e. U A e. z ) |
17 |
15 16
|
sylib |
|- ( ph -> E. z e. U A e. z ) |
18 |
6
|
elin2d |
|- ( ph -> U e. Fin ) |
19 |
10
|
ssrab3 |
|- T C_ U |
20 |
|
ssfi |
|- ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) |
21 |
18 19 20
|
sylancl |
|- ( ph -> T e. Fin ) |
22 |
7
|
adantr |
|- ( ( ph /\ t e. T ) -> ( A [,] B ) C_ U. U ) |
23 |
|
ineq1 |
|- ( u = t -> ( u i^i ( A [,] B ) ) = ( t i^i ( A [,] B ) ) ) |
24 |
23
|
neeq1d |
|- ( u = t -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( t i^i ( A [,] B ) ) =/= (/) ) ) |
25 |
24 10
|
elrab2 |
|- ( t e. T <-> ( t e. U /\ ( t i^i ( A [,] B ) ) =/= (/) ) ) |
26 |
25
|
simplbi |
|- ( t e. T -> t e. U ) |
27 |
|
ffvelrn |
|- ( ( G : U --> NN /\ t e. U ) -> ( G ` t ) e. NN ) |
28 |
8 26 27
|
syl2an |
|- ( ( ph /\ t e. T ) -> ( G ` t ) e. NN ) |
29 |
5
|
ffvelrnda |
|- ( ( ph /\ ( G ` t ) e. NN ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
30 |
28 29
|
syldan |
|- ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
31 |
30
|
elin2d |
|- ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) |
32 |
|
xp2nd |
|- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
33 |
31 32
|
syl |
|- ( ( ph /\ t e. T ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
34 |
2
|
adantr |
|- ( ( ph /\ t e. T ) -> B e. RR ) |
35 |
33 34
|
ifcld |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR ) |
36 |
25
|
simprbi |
|- ( t e. T -> ( t i^i ( A [,] B ) ) =/= (/) ) |
37 |
36
|
adantl |
|- ( ( ph /\ t e. T ) -> ( t i^i ( A [,] B ) ) =/= (/) ) |
38 |
|
n0 |
|- ( ( t i^i ( A [,] B ) ) =/= (/) <-> E. y y e. ( t i^i ( A [,] B ) ) ) |
39 |
37 38
|
sylib |
|- ( ( ph /\ t e. T ) -> E. y y e. ( t i^i ( A [,] B ) ) ) |
40 |
1
|
adantr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A e. RR ) |
41 |
|
simprr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( t i^i ( A [,] B ) ) ) |
42 |
41
|
elin2d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( A [,] B ) ) |
43 |
2
|
adantr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> B e. RR ) |
44 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
45 |
1 43 44
|
syl2an2r |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
46 |
42 45
|
mpbid |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
47 |
46
|
simp1d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. RR ) |
48 |
31
|
adantrr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) |
49 |
48 32
|
syl |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
50 |
46
|
simp2d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ y ) |
51 |
41
|
elin1d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. t ) |
52 |
28
|
adantrr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( G ` t ) e. NN ) |
53 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` t ) e. NN ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) |
54 |
5 52 53
|
syl2an2r |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) |
55 |
26 9
|
sylan2 |
|- ( ( ph /\ t e. T ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
56 |
55
|
adantrr |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
57 |
|
1st2nd2 |
|- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
58 |
48 57
|
syl |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
59 |
58
|
fveq2d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) ) |
60 |
|
df-ov |
|- ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
61 |
59 60
|
eqtr4di |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
62 |
54 56 61
|
3eqtr3d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> t = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
63 |
51 62
|
eleqtrd |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
64 |
|
xp1st |
|- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) |
65 |
48 64
|
syl |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) |
66 |
|
rexr |
|- ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR* ) |
67 |
|
rexr |
|- ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) |
68 |
|
elioo2 |
|- ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR* /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
69 |
66 67 68
|
syl2an |
|- ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
70 |
65 49 69
|
syl2anc |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
71 |
63 70
|
mpbid |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
72 |
71
|
simp3d |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y < ( 2nd ` ( F ` ( G ` t ) ) ) ) |
73 |
47 49 72
|
ltled |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
74 |
40 47 49 50 73
|
letrd |
|- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
75 |
74
|
expr |
|- ( ( ph /\ t e. T ) -> ( y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
76 |
75
|
exlimdv |
|- ( ( ph /\ t e. T ) -> ( E. y y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
77 |
39 76
|
mpd |
|- ( ( ph /\ t e. T ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
78 |
3
|
adantr |
|- ( ( ph /\ t e. T ) -> A <_ B ) |
79 |
|
breq2 |
|- ( ( 2nd ` ( F ` ( G ` t ) ) ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) |
80 |
|
breq2 |
|- ( B = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ B <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) |
81 |
79 80
|
ifboth |
|- ( ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) /\ A <_ B ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
82 |
77 78 81
|
syl2anc |
|- ( ( ph /\ t e. T ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
83 |
|
min2 |
|- ( ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR /\ B e. RR ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) |
84 |
33 34 83
|
syl2anc |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) |
85 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
86 |
1 2 85
|
syl2anc |
|- ( ph -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
87 |
86
|
adantr |
|- ( ( ph /\ t e. T ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
88 |
35 82 84 87
|
mpbir3and |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) |
89 |
22 88
|
sseldd |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U ) |
90 |
|
eluni2 |
|- ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U <-> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
91 |
89 90
|
sylib |
|- ( ( ph /\ t e. T ) -> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
92 |
|
simprl |
|- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. U ) |
93 |
|
simprr |
|- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
94 |
88
|
adantr |
|- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) |
95 |
|
inelcm |
|- ( ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) |
96 |
93 94 95
|
syl2anc |
|- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) |
97 |
|
ineq1 |
|- ( u = x -> ( u i^i ( A [,] B ) ) = ( x i^i ( A [,] B ) ) ) |
98 |
97
|
neeq1d |
|- ( u = x -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( x i^i ( A [,] B ) ) =/= (/) ) ) |
99 |
98 10
|
elrab2 |
|- ( x e. T <-> ( x e. U /\ ( x i^i ( A [,] B ) ) =/= (/) ) ) |
100 |
92 96 99
|
sylanbrc |
|- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. T ) |
101 |
91 100 93
|
reximssdv |
|- ( ( ph /\ t e. T ) -> E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
102 |
101
|
ralrimiva |
|- ( ph -> A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
103 |
|
eleq2 |
|- ( x = ( h ` t ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
104 |
103
|
ac6sfi |
|- ( ( T e. Fin /\ A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
105 |
21 102 104
|
syl2anc |
|- ( ph -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
106 |
105
|
adantr |
|- ( ( ph /\ ( z e. U /\ A e. z ) ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
107 |
|
2fveq3 |
|- ( x = t -> ( F ` ( G ` x ) ) = ( F ` ( G ` t ) ) ) |
108 |
107
|
fveq2d |
|- ( x = t -> ( 2nd ` ( F ` ( G ` x ) ) ) = ( 2nd ` ( F ` ( G ` t ) ) ) ) |
109 |
108
|
breq1d |
|- ( x = t -> ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` t ) ) ) <_ B ) ) |
110 |
109 108
|
ifbieq1d |
|- ( x = t -> if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
111 |
|
fveq2 |
|- ( x = t -> ( h ` x ) = ( h ` t ) ) |
112 |
110 111
|
eleq12d |
|- ( x = t -> ( if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
113 |
112
|
cbvralvw |
|- ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
114 |
1
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. RR ) |
115 |
2
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> B e. RR ) |
116 |
3
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A <_ B ) |
117 |
5
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
118 |
6
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
119 |
7
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( A [,] B ) C_ U. U ) |
120 |
8
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> G : U --> NN ) |
121 |
9
|
adantlr |
|- ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
122 |
|
simprrl |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> h : T --> T ) |
123 |
|
simprrr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) |
124 |
112
|
rspccva |
|- ( ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
125 |
123 124
|
sylan |
|- ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
126 |
|
simprlr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. z ) |
127 |
|
simprll |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. U ) |
128 |
14
|
adantr |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. ( A [,] B ) ) |
129 |
|
inelcm |
|- ( ( A e. z /\ A e. ( A [,] B ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) |
130 |
126 128 129
|
syl2anc |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) |
131 |
|
ineq1 |
|- ( u = z -> ( u i^i ( A [,] B ) ) = ( z i^i ( A [,] B ) ) ) |
132 |
131
|
neeq1d |
|- ( u = z -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( z i^i ( A [,] B ) ) =/= (/) ) ) |
133 |
132 10
|
elrab2 |
|- ( z e. T <-> ( z e. U /\ ( z i^i ( A [,] B ) ) =/= (/) ) ) |
134 |
127 130 133
|
sylanbrc |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. T ) |
135 |
|
eqid |
|- seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) = seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) |
136 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) = ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) |
137 |
136
|
eleq2d |
|- ( m = n -> ( B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) <-> B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) ) |
138 |
137
|
cbvrabv |
|- { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } = { n e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) } |
139 |
|
eqid |
|- inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) = inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) |
140 |
114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139
|
ovolicc2lem4 |
|- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
141 |
140
|
anassrs |
|- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
142 |
141
|
expr |
|- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
143 |
113 142
|
syl5bir |
|- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
144 |
143
|
expimpd |
|- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
145 |
144
|
exlimdv |
|- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
146 |
106 145
|
mpd |
|- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
147 |
17 146
|
rexlimddv |
|- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |