| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ovolicc.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ovolicc.3 |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | ovolicc2.4 |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 5 |  | ovolicc2.5 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 6 |  | ovolicc2.6 |  |-  ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) | 
						
							| 7 |  | ovolicc2.7 |  |-  ( ph -> ( A [,] B ) C_ U. U ) | 
						
							| 8 |  | ovolicc2.8 |  |-  ( ph -> G : U --> NN ) | 
						
							| 9 |  | ovolicc2.9 |  |-  ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) | 
						
							| 10 |  | ovolicc2.10 |  |-  T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } | 
						
							| 11 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 12 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 13 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 14 | 11 12 3 13 | syl3anc |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 15 | 7 14 | sseldd |  |-  ( ph -> A e. U. U ) | 
						
							| 16 |  | eluni2 |  |-  ( A e. U. U <-> E. z e. U A e. z ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ph -> E. z e. U A e. z ) | 
						
							| 18 | 6 | elin2d |  |-  ( ph -> U e. Fin ) | 
						
							| 19 | 10 | ssrab3 |  |-  T C_ U | 
						
							| 20 |  | ssfi |  |-  ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( ph -> T e. Fin ) | 
						
							| 22 | 7 | adantr |  |-  ( ( ph /\ t e. T ) -> ( A [,] B ) C_ U. U ) | 
						
							| 23 |  | ineq1 |  |-  ( u = t -> ( u i^i ( A [,] B ) ) = ( t i^i ( A [,] B ) ) ) | 
						
							| 24 | 23 | neeq1d |  |-  ( u = t -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( t i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 25 | 24 10 | elrab2 |  |-  ( t e. T <-> ( t e. U /\ ( t i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 26 | 25 | simplbi |  |-  ( t e. T -> t e. U ) | 
						
							| 27 |  | ffvelcdm |  |-  ( ( G : U --> NN /\ t e. U ) -> ( G ` t ) e. NN ) | 
						
							| 28 | 8 26 27 | syl2an |  |-  ( ( ph /\ t e. T ) -> ( G ` t ) e. NN ) | 
						
							| 29 | 5 | ffvelcdmda |  |-  ( ( ph /\ ( G ` t ) e. NN ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 30 | 28 29 | syldan |  |-  ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 31 | 30 | elin2d |  |-  ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) | 
						
							| 32 |  | xp2nd |  |-  ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ph /\ t e. T ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) | 
						
							| 34 | 2 | adantr |  |-  ( ( ph /\ t e. T ) -> B e. RR ) | 
						
							| 35 | 33 34 | ifcld |  |-  ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR ) | 
						
							| 36 | 25 | simprbi |  |-  ( t e. T -> ( t i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ t e. T ) -> ( t i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 38 |  | n0 |  |-  ( ( t i^i ( A [,] B ) ) =/= (/) <-> E. y y e. ( t i^i ( A [,] B ) ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( ph /\ t e. T ) -> E. y y e. ( t i^i ( A [,] B ) ) ) | 
						
							| 40 | 1 | adantr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A e. RR ) | 
						
							| 41 |  | simprr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( t i^i ( A [,] B ) ) ) | 
						
							| 42 | 41 | elin2d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( A [,] B ) ) | 
						
							| 43 | 2 | adantr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> B e. RR ) | 
						
							| 44 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) | 
						
							| 45 | 1 43 44 | syl2an2r |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) | 
						
							| 46 | 42 45 | mpbid |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) | 
						
							| 47 | 46 | simp1d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. RR ) | 
						
							| 48 | 31 | adantrr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) | 
						
							| 49 | 48 32 | syl |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) | 
						
							| 50 | 46 | simp2d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ y ) | 
						
							| 51 | 41 | elin1d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. t ) | 
						
							| 52 | 28 | adantrr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( G ` t ) e. NN ) | 
						
							| 53 |  | fvco3 |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` t ) e. NN ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) | 
						
							| 54 | 5 52 53 | syl2an2r |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) | 
						
							| 55 | 26 9 | sylan2 |  |-  ( ( ph /\ t e. T ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) | 
						
							| 56 | 55 | adantrr |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) | 
						
							| 57 |  | 1st2nd2 |  |-  ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) | 
						
							| 58 | 48 57 | syl |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) ) | 
						
							| 60 |  | df-ov |  |-  ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) | 
						
							| 61 | 59 60 | eqtr4di |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 62 | 54 56 61 | 3eqtr3d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> t = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 63 | 51 62 | eleqtrd |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 64 |  | xp1st |  |-  ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) | 
						
							| 65 | 48 64 | syl |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) | 
						
							| 66 |  | rexr |  |-  ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR* ) | 
						
							| 67 |  | rexr |  |-  ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) | 
						
							| 68 |  | elioo2 |  |-  ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR* /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) | 
						
							| 69 | 66 67 68 | syl2an |  |-  ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) | 
						
							| 70 | 65 49 69 | syl2anc |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) | 
						
							| 71 | 63 70 | mpbid |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 72 | 71 | simp3d |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y < ( 2nd ` ( F ` ( G ` t ) ) ) ) | 
						
							| 73 | 47 49 72 | ltled |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) | 
						
							| 74 | 40 47 49 50 73 | letrd |  |-  ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) | 
						
							| 75 | 74 | expr |  |-  ( ( ph /\ t e. T ) -> ( y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 76 | 75 | exlimdv |  |-  ( ( ph /\ t e. T ) -> ( E. y y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) | 
						
							| 77 | 39 76 | mpd |  |-  ( ( ph /\ t e. T ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) | 
						
							| 78 | 3 | adantr |  |-  ( ( ph /\ t e. T ) -> A <_ B ) | 
						
							| 79 |  | breq2 |  |-  ( ( 2nd ` ( F ` ( G ` t ) ) ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) | 
						
							| 80 |  | breq2 |  |-  ( B = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ B <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) | 
						
							| 81 | 79 80 | ifboth |  |-  ( ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) /\ A <_ B ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) | 
						
							| 82 | 77 78 81 | syl2anc |  |-  ( ( ph /\ t e. T ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) | 
						
							| 83 |  | min2 |  |-  ( ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR /\ B e. RR ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) | 
						
							| 84 | 33 34 83 | syl2anc |  |-  ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) | 
						
							| 85 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) | 
						
							| 86 | 1 2 85 | syl2anc |  |-  ( ph -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ph /\ t e. T ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) | 
						
							| 88 | 35 82 84 87 | mpbir3and |  |-  ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) | 
						
							| 89 | 22 88 | sseldd |  |-  ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U ) | 
						
							| 90 |  | eluni2 |  |-  ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U <-> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) | 
						
							| 91 | 89 90 | sylib |  |-  ( ( ph /\ t e. T ) -> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) | 
						
							| 92 |  | simprl |  |-  ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. U ) | 
						
							| 93 |  | simprr |  |-  ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) | 
						
							| 94 | 88 | adantr |  |-  ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) | 
						
							| 95 |  | inelcm |  |-  ( ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 96 | 93 94 95 | syl2anc |  |-  ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 97 |  | ineq1 |  |-  ( u = x -> ( u i^i ( A [,] B ) ) = ( x i^i ( A [,] B ) ) ) | 
						
							| 98 | 97 | neeq1d |  |-  ( u = x -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( x i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 99 | 98 10 | elrab2 |  |-  ( x e. T <-> ( x e. U /\ ( x i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 100 | 92 96 99 | sylanbrc |  |-  ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. T ) | 
						
							| 101 | 91 100 93 | reximssdv |  |-  ( ( ph /\ t e. T ) -> E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) | 
						
							| 102 | 101 | ralrimiva |  |-  ( ph -> A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) | 
						
							| 103 |  | eleq2 |  |-  ( x = ( h ` t ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) | 
						
							| 104 | 103 | ac6sfi |  |-  ( ( T e. Fin /\ A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) | 
						
							| 105 | 21 102 104 | syl2anc |  |-  ( ph -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ ( z e. U /\ A e. z ) ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) | 
						
							| 107 |  | 2fveq3 |  |-  ( x = t -> ( F ` ( G ` x ) ) = ( F ` ( G ` t ) ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( x = t -> ( 2nd ` ( F ` ( G ` x ) ) ) = ( 2nd ` ( F ` ( G ` t ) ) ) ) | 
						
							| 109 | 108 | breq1d |  |-  ( x = t -> ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` t ) ) ) <_ B ) ) | 
						
							| 110 | 109 108 | ifbieq1d |  |-  ( x = t -> if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) | 
						
							| 111 |  | fveq2 |  |-  ( x = t -> ( h ` x ) = ( h ` t ) ) | 
						
							| 112 | 110 111 | eleq12d |  |-  ( x = t -> ( if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) | 
						
							| 113 | 112 | cbvralvw |  |-  ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) | 
						
							| 114 | 1 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. RR ) | 
						
							| 115 | 2 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> B e. RR ) | 
						
							| 116 | 3 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A <_ B ) | 
						
							| 117 | 5 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 118 | 6 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) | 
						
							| 119 | 7 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( A [,] B ) C_ U. U ) | 
						
							| 120 | 8 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> G : U --> NN ) | 
						
							| 121 | 9 | adantlr |  |-  ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) | 
						
							| 122 |  | simprrl |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> h : T --> T ) | 
						
							| 123 |  | simprrr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) | 
						
							| 124 | 112 | rspccva |  |-  ( ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) | 
						
							| 125 | 123 124 | sylan |  |-  ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) | 
						
							| 126 |  | simprlr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. z ) | 
						
							| 127 |  | simprll |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. U ) | 
						
							| 128 | 14 | adantr |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. ( A [,] B ) ) | 
						
							| 129 |  | inelcm |  |-  ( ( A e. z /\ A e. ( A [,] B ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 130 | 126 128 129 | syl2anc |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) | 
						
							| 131 |  | ineq1 |  |-  ( u = z -> ( u i^i ( A [,] B ) ) = ( z i^i ( A [,] B ) ) ) | 
						
							| 132 | 131 | neeq1d |  |-  ( u = z -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( z i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 133 | 132 10 | elrab2 |  |-  ( z e. T <-> ( z e. U /\ ( z i^i ( A [,] B ) ) =/= (/) ) ) | 
						
							| 134 | 127 130 133 | sylanbrc |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. T ) | 
						
							| 135 |  | eqid |  |-  seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) = seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) | 
						
							| 136 |  | fveq2 |  |-  ( m = n -> ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) = ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) | 
						
							| 137 | 136 | eleq2d |  |-  ( m = n -> ( B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) <-> B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) ) | 
						
							| 138 | 137 | cbvrabv |  |-  { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } = { n e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) } | 
						
							| 139 |  | eqid |  |-  inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) = inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) | 
						
							| 140 | 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 | ovolicc2lem4 |  |-  ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 141 | 140 | anassrs |  |-  ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 142 | 141 | expr |  |-  ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) | 
						
							| 143 | 113 142 | biimtrrid |  |-  ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) | 
						
							| 144 | 143 | expimpd |  |-  ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) | 
						
							| 145 | 144 | exlimdv |  |-  ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) | 
						
							| 146 | 106 145 | mpd |  |-  ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 147 | 17 146 | rexlimddv |  |-  ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |