| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 2 |
|
mblvol |
|- ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) |
| 4 |
|
iccmbl |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
| 5 |
|
mblvol |
|- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 6 |
4 5
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 7 |
6
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 8 |
1
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A (,) B ) e. dom vol ) |
| 9 |
|
prssi |
|- ( ( A e. RR /\ B e. RR ) -> { A , B } C_ RR ) |
| 10 |
9
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> { A , B } C_ RR ) |
| 11 |
|
prfi |
|- { A , B } e. Fin |
| 12 |
|
ovolfi |
|- ( ( { A , B } e. Fin /\ { A , B } C_ RR ) -> ( vol* ` { A , B } ) = 0 ) |
| 13 |
11 10 12
|
sylancr |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` { A , B } ) = 0 ) |
| 14 |
|
nulmbl |
|- ( ( { A , B } C_ RR /\ ( vol* ` { A , B } ) = 0 ) -> { A , B } e. dom vol ) |
| 15 |
10 13 14
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> { A , B } e. dom vol ) |
| 16 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
| 17 |
16
|
ineq2i |
|- ( ( A (,) B ) i^i { A , B } ) = ( ( A (,) B ) i^i ( { A } u. { B } ) ) |
| 18 |
|
indi |
|- ( ( A (,) B ) i^i ( { A } u. { B } ) ) = ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) |
| 19 |
17 18
|
eqtri |
|- ( ( A (,) B ) i^i { A , B } ) = ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) |
| 20 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR ) |
| 21 |
20
|
ltnrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. A < A ) |
| 22 |
|
eliooord |
|- ( A e. ( A (,) B ) -> ( A < A /\ A < B ) ) |
| 23 |
22
|
simpld |
|- ( A e. ( A (,) B ) -> A < A ) |
| 24 |
21 23
|
nsyl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. A e. ( A (,) B ) ) |
| 25 |
|
disjsn |
|- ( ( ( A (,) B ) i^i { A } ) = (/) <-> -. A e. ( A (,) B ) ) |
| 26 |
24 25
|
sylibr |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { A } ) = (/) ) |
| 27 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
| 28 |
27
|
ltnrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. B < B ) |
| 29 |
|
eliooord |
|- ( B e. ( A (,) B ) -> ( A < B /\ B < B ) ) |
| 30 |
29
|
simprd |
|- ( B e. ( A (,) B ) -> B < B ) |
| 31 |
28 30
|
nsyl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. B e. ( A (,) B ) ) |
| 32 |
|
disjsn |
|- ( ( ( A (,) B ) i^i { B } ) = (/) <-> -. B e. ( A (,) B ) ) |
| 33 |
31 32
|
sylibr |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { B } ) = (/) ) |
| 34 |
26 33
|
uneq12d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) = ( (/) u. (/) ) ) |
| 35 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 36 |
34 35
|
eqtrdi |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) = (/) ) |
| 37 |
19 36
|
eqtrid |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { A , B } ) = (/) ) |
| 38 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 39 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 40 |
39
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
| 41 |
|
ovolicc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
| 42 |
27 20
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
| 43 |
41 42
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 44 |
|
ovolsscl |
|- ( ( ( A (,) B ) C_ ( A [,] B ) /\ ( A [,] B ) C_ RR /\ ( vol* ` ( A [,] B ) ) e. RR ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 45 |
38 40 43 44
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 46 |
3 45
|
eqeltrid |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) e. RR ) |
| 47 |
|
mblvol |
|- ( { A , B } e. dom vol -> ( vol ` { A , B } ) = ( vol* ` { A , B } ) ) |
| 48 |
15 47
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) = ( vol* ` { A , B } ) ) |
| 49 |
48 13
|
eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) = 0 ) |
| 50 |
|
0re |
|- 0 e. RR |
| 51 |
49 50
|
eqeltrdi |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) e. RR ) |
| 52 |
|
volun |
|- ( ( ( ( A (,) B ) e. dom vol /\ { A , B } e. dom vol /\ ( ( A (,) B ) i^i { A , B } ) = (/) ) /\ ( ( vol ` ( A (,) B ) ) e. RR /\ ( vol ` { A , B } ) e. RR ) ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) ) |
| 53 |
8 15 37 46 51 52
|
syl32anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) ) |
| 54 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 55 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 56 |
|
id |
|- ( A <_ B -> A <_ B ) |
| 57 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 58 |
54 55 56 57
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 59 |
58
|
fveq2d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( vol ` ( A [,] B ) ) ) |
| 60 |
49
|
oveq2d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + 0 ) ) |
| 61 |
46
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) e. CC ) |
| 62 |
61
|
addridd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + 0 ) = ( vol ` ( A (,) B ) ) ) |
| 63 |
60 62
|
eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) = ( vol ` ( A (,) B ) ) ) |
| 64 |
53 59 63
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( vol ` ( A (,) B ) ) ) |
| 65 |
7 64 41
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 66 |
3 65
|
eqtr3id |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |