Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
|- T = seq 1 ( + , G ) |
2 |
|
ovoliun.g |
|- G = ( n e. NN |-> ( vol* ` A ) ) |
3 |
|
ovoliun.a |
|- ( ( ph /\ n e. NN ) -> A C_ RR ) |
4 |
|
ovoliun.v |
|- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
5 |
|
mnfxr |
|- -oo e. RR* |
6 |
5
|
a1i |
|- ( ph -> -oo e. RR* ) |
7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
8 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
9 |
4 2
|
fmptd |
|- ( ph -> G : NN --> RR ) |
10 |
9
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. RR ) |
11 |
7 8 10
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
12 |
1
|
feq1i |
|- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
13 |
11 12
|
sylibr |
|- ( ph -> T : NN --> RR ) |
14 |
|
1nn |
|- 1 e. NN |
15 |
|
ffvelrn |
|- ( ( T : NN --> RR /\ 1 e. NN ) -> ( T ` 1 ) e. RR ) |
16 |
13 14 15
|
sylancl |
|- ( ph -> ( T ` 1 ) e. RR ) |
17 |
16
|
rexrd |
|- ( ph -> ( T ` 1 ) e. RR* ) |
18 |
13
|
frnd |
|- ( ph -> ran T C_ RR ) |
19 |
|
ressxr |
|- RR C_ RR* |
20 |
18 19
|
sstrdi |
|- ( ph -> ran T C_ RR* ) |
21 |
|
supxrcl |
|- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
22 |
20 21
|
syl |
|- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
23 |
16
|
mnfltd |
|- ( ph -> -oo < ( T ` 1 ) ) |
24 |
13
|
ffnd |
|- ( ph -> T Fn NN ) |
25 |
|
fnfvelrn |
|- ( ( T Fn NN /\ 1 e. NN ) -> ( T ` 1 ) e. ran T ) |
26 |
24 14 25
|
sylancl |
|- ( ph -> ( T ` 1 ) e. ran T ) |
27 |
|
supxrub |
|- ( ( ran T C_ RR* /\ ( T ` 1 ) e. ran T ) -> ( T ` 1 ) <_ sup ( ran T , RR* , < ) ) |
28 |
20 26 27
|
syl2anc |
|- ( ph -> ( T ` 1 ) <_ sup ( ran T , RR* , < ) ) |
29 |
6 17 22 23 28
|
xrltletrd |
|- ( ph -> -oo < sup ( ran T , RR* , < ) ) |
30 |
|
xrrebnd |
|- ( sup ( ran T , RR* , < ) e. RR* -> ( sup ( ran T , RR* , < ) e. RR <-> ( -oo < sup ( ran T , RR* , < ) /\ sup ( ran T , RR* , < ) < +oo ) ) ) |
31 |
22 30
|
syl |
|- ( ph -> ( sup ( ran T , RR* , < ) e. RR <-> ( -oo < sup ( ran T , RR* , < ) /\ sup ( ran T , RR* , < ) < +oo ) ) ) |
32 |
29 31
|
mpbirand |
|- ( ph -> ( sup ( ran T , RR* , < ) e. RR <-> sup ( ran T , RR* , < ) < +oo ) ) |
33 |
|
nfcv |
|- F/_ m A |
34 |
|
nfcsb1v |
|- F/_ n [_ m / n ]_ A |
35 |
|
csbeq1a |
|- ( n = m -> A = [_ m / n ]_ A ) |
36 |
33 34 35
|
cbviun |
|- U_ n e. NN A = U_ m e. NN [_ m / n ]_ A |
37 |
36
|
fveq2i |
|- ( vol* ` U_ n e. NN A ) = ( vol* ` U_ m e. NN [_ m / n ]_ A ) |
38 |
|
nfcv |
|- F/_ m ( vol* ` A ) |
39 |
|
nfcv |
|- F/_ n vol* |
40 |
39 34
|
nffv |
|- F/_ n ( vol* ` [_ m / n ]_ A ) |
41 |
35
|
fveq2d |
|- ( n = m -> ( vol* ` A ) = ( vol* ` [_ m / n ]_ A ) ) |
42 |
38 40 41
|
cbvmpt |
|- ( n e. NN |-> ( vol* ` A ) ) = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
43 |
2 42
|
eqtri |
|- G = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
44 |
3
|
ralrimiva |
|- ( ph -> A. n e. NN A C_ RR ) |
45 |
|
nfv |
|- F/ m A C_ RR |
46 |
|
nfcv |
|- F/_ n RR |
47 |
34 46
|
nfss |
|- F/ n [_ m / n ]_ A C_ RR |
48 |
35
|
sseq1d |
|- ( n = m -> ( A C_ RR <-> [_ m / n ]_ A C_ RR ) ) |
49 |
45 47 48
|
cbvralw |
|- ( A. n e. NN A C_ RR <-> A. m e. NN [_ m / n ]_ A C_ RR ) |
50 |
44 49
|
sylib |
|- ( ph -> A. m e. NN [_ m / n ]_ A C_ RR ) |
51 |
50
|
ad2antrr |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> A. m e. NN [_ m / n ]_ A C_ RR ) |
52 |
51
|
r19.21bi |
|- ( ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) /\ m e. NN ) -> [_ m / n ]_ A C_ RR ) |
53 |
4
|
ralrimiva |
|- ( ph -> A. n e. NN ( vol* ` A ) e. RR ) |
54 |
38
|
nfel1 |
|- F/ m ( vol* ` A ) e. RR |
55 |
40
|
nfel1 |
|- F/ n ( vol* ` [_ m / n ]_ A ) e. RR |
56 |
41
|
eleq1d |
|- ( n = m -> ( ( vol* ` A ) e. RR <-> ( vol* ` [_ m / n ]_ A ) e. RR ) ) |
57 |
54 55 56
|
cbvralw |
|- ( A. n e. NN ( vol* ` A ) e. RR <-> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
58 |
53 57
|
sylib |
|- ( ph -> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
59 |
58
|
ad2antrr |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
60 |
59
|
r19.21bi |
|- ( ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) /\ m e. NN ) -> ( vol* ` [_ m / n ]_ A ) e. RR ) |
61 |
|
simplr |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> sup ( ran T , RR* , < ) e. RR ) |
62 |
|
simpr |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> x e. RR+ ) |
63 |
1 43 52 60 61 62
|
ovoliunlem3 |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` U_ m e. NN [_ m / n ]_ A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
64 |
37 63
|
eqbrtrid |
|- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
65 |
64
|
ralrimiva |
|- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
66 |
|
iunss |
|- ( U_ n e. NN A C_ RR <-> A. n e. NN A C_ RR ) |
67 |
44 66
|
sylibr |
|- ( ph -> U_ n e. NN A C_ RR ) |
68 |
|
ovolcl |
|- ( U_ n e. NN A C_ RR -> ( vol* ` U_ n e. NN A ) e. RR* ) |
69 |
67 68
|
syl |
|- ( ph -> ( vol* ` U_ n e. NN A ) e. RR* ) |
70 |
|
xralrple |
|- ( ( ( vol* ` U_ n e. NN A ) e. RR* /\ sup ( ran T , RR* , < ) e. RR ) -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) ) |
71 |
69 70
|
sylan |
|- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) ) |
72 |
65 71
|
mpbird |
|- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |
73 |
72
|
ex |
|- ( ph -> ( sup ( ran T , RR* , < ) e. RR -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
74 |
32 73
|
sylbird |
|- ( ph -> ( sup ( ran T , RR* , < ) < +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
75 |
|
nltpnft |
|- ( sup ( ran T , RR* , < ) e. RR* -> ( sup ( ran T , RR* , < ) = +oo <-> -. sup ( ran T , RR* , < ) < +oo ) ) |
76 |
22 75
|
syl |
|- ( ph -> ( sup ( ran T , RR* , < ) = +oo <-> -. sup ( ran T , RR* , < ) < +oo ) ) |
77 |
|
pnfge |
|- ( ( vol* ` U_ n e. NN A ) e. RR* -> ( vol* ` U_ n e. NN A ) <_ +oo ) |
78 |
69 77
|
syl |
|- ( ph -> ( vol* ` U_ n e. NN A ) <_ +oo ) |
79 |
|
breq2 |
|- ( sup ( ran T , RR* , < ) = +oo -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> ( vol* ` U_ n e. NN A ) <_ +oo ) ) |
80 |
78 79
|
syl5ibrcom |
|- ( ph -> ( sup ( ran T , RR* , < ) = +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
81 |
76 80
|
sylbird |
|- ( ph -> ( -. sup ( ran T , RR* , < ) < +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
82 |
74 81
|
pm2.61d |
|- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |