Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
|- T = seq 1 ( + , G ) |
2 |
|
ovoliun.g |
|- G = ( n e. NN |-> ( vol* ` A ) ) |
3 |
|
ovoliun.a |
|- ( ( ph /\ n e. NN ) -> A C_ RR ) |
4 |
|
ovoliun.v |
|- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
5 |
|
ovoliun.r |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
6 |
|
ovoliun.b |
|- ( ph -> B e. RR+ ) |
7 |
|
ovoliun.s |
|- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
8 |
|
ovoliun.u |
|- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
9 |
|
ovoliun.h |
|- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
10 |
|
ovoliun.j |
|- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
11 |
|
ovoliun.f |
|- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
12 |
|
ovoliun.x1 |
|- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
13 |
|
ovoliun.x2 |
|- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
14 |
|
ovoliun.k |
|- ( ph -> K e. NN ) |
15 |
|
ovoliun.l1 |
|- ( ph -> L e. ZZ ) |
16 |
|
ovoliun.l2 |
|- ( ph -> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) |
17 |
|
2fveq3 |
|- ( j = ( J ` m ) -> ( F ` ( 1st ` j ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
18 |
|
fveq2 |
|- ( j = ( J ` m ) -> ( 2nd ` j ) = ( 2nd ` ( J ` m ) ) ) |
19 |
17 18
|
fveq12d |
|- ( j = ( J ` m ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
20 |
19
|
fveq2d |
|- ( j = ( J ` m ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
21 |
19
|
fveq2d |
|- ( j = ( J ` m ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
22 |
20 21
|
oveq12d |
|- ( j = ( J ` m ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
23 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
24 |
|
f1of1 |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN -1-1-> ( NN X. NN ) ) |
25 |
10 24
|
syl |
|- ( ph -> J : NN -1-1-> ( NN X. NN ) ) |
26 |
|
fz1ssnn |
|- ( 1 ... K ) C_ NN |
27 |
|
f1ores |
|- ( ( J : NN -1-1-> ( NN X. NN ) /\ ( 1 ... K ) C_ NN ) -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
28 |
25 26 27
|
sylancl |
|- ( ph -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
29 |
|
fvres |
|- ( m e. ( 1 ... K ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
31 |
11
|
adantr |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
32 |
|
imassrn |
|- ( J " ( 1 ... K ) ) C_ ran J |
33 |
|
f1of |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) |
34 |
10 33
|
syl |
|- ( ph -> J : NN --> ( NN X. NN ) ) |
35 |
34
|
frnd |
|- ( ph -> ran J C_ ( NN X. NN ) ) |
36 |
32 35
|
sstrid |
|- ( ph -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
37 |
36
|
sselda |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> j e. ( NN X. NN ) ) |
38 |
|
xp1st |
|- ( j e. ( NN X. NN ) -> ( 1st ` j ) e. NN ) |
39 |
37 38
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. NN ) |
40 |
31 39
|
ffvelrnd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
41 |
|
elovolmlem |
|- ( ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
42 |
40 41
|
sylib |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
43 |
|
xp2nd |
|- ( j e. ( NN X. NN ) -> ( 2nd ` j ) e. NN ) |
44 |
37 43
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` j ) e. NN ) |
45 |
42 44
|
ffvelrnd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
46 |
45
|
elin2d |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) ) |
47 |
|
xp2nd |
|- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
48 |
46 47
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
49 |
|
xp1st |
|- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
50 |
46 49
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
51 |
48 50
|
resubcld |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
52 |
51
|
recnd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. CC ) |
53 |
22 23 28 30 52
|
fsumf1o |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
54 |
11
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
55 |
34
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) |
56 |
|
xp1st |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
57 |
55 56
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
58 |
54 57
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
59 |
|
elovolmlem |
|- ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
60 |
58 59
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
61 |
|
xp2nd |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
62 |
55 61
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
63 |
60 62
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
64 |
63 9
|
fmptd |
|- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
65 |
|
elfznn |
|- ( m e. ( 1 ... K ) -> m e. NN ) |
66 |
|
eqid |
|- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
67 |
66
|
ovolfsval |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
68 |
64 65 67
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
69 |
65
|
adantl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> m e. NN ) |
70 |
|
2fveq3 |
|- ( k = m -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` m ) ) ) |
71 |
70
|
fveq2d |
|- ( k = m -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
72 |
|
2fveq3 |
|- ( k = m -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` m ) ) ) |
73 |
71 72
|
fveq12d |
|- ( k = m -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
74 |
|
fvex |
|- ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) e. _V |
75 |
73 9 74
|
fvmpt |
|- ( m e. NN -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
76 |
69 75
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
77 |
76
|
fveq2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
78 |
76
|
fveq2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
79 |
77 78
|
oveq12d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
80 |
68 79
|
eqtrd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
81 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
82 |
14 81
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` 1 ) ) |
83 |
|
ffvelrn |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
84 |
64 65 83
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
85 |
84
|
elin2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( RR X. RR ) ) |
86 |
|
xp2nd |
|- ( ( H ` m ) e. ( RR X. RR ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
87 |
85 86
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
88 |
|
xp1st |
|- ( ( H ` m ) e. ( RR X. RR ) -> ( 1st ` ( H ` m ) ) e. RR ) |
89 |
85 88
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) e. RR ) |
90 |
87 89
|
resubcld |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. RR ) |
91 |
90
|
recnd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. CC ) |
92 |
79 91
|
eqeltrrd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) e. CC ) |
93 |
80 82 92
|
fsumser |
|- ( ph -> sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
94 |
53 93
|
eqtrd |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
95 |
8
|
fveq1i |
|- ( U ` K ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) |
96 |
94 95
|
eqtr4di |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( U ` K ) ) |
97 |
|
f1oeng |
|- ( ( ( 1 ... K ) e. Fin /\ ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
98 |
23 28 97
|
syl2anc |
|- ( ph -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
99 |
98
|
ensymd |
|- ( ph -> ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) |
100 |
|
enfii |
|- ( ( ( 1 ... K ) e. Fin /\ ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) -> ( J " ( 1 ... K ) ) e. Fin ) |
101 |
23 99 100
|
syl2anc |
|- ( ph -> ( J " ( 1 ... K ) ) e. Fin ) |
102 |
101 51
|
fsumrecl |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
103 |
|
fzfid |
|- ( ph -> ( 1 ... L ) e. Fin ) |
104 |
|
elfznn |
|- ( n e. ( 1 ... L ) -> n e. NN ) |
105 |
104 4
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR ) |
106 |
103 105
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. RR ) |
107 |
6
|
rpred |
|- ( ph -> B e. RR ) |
108 |
|
2nn |
|- 2 e. NN |
109 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
110 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
111 |
108 109 110
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
112 |
104 111
|
syl |
|- ( n e. ( 1 ... L ) -> ( 2 ^ n ) e. NN ) |
113 |
|
nndivre |
|- ( ( B e. RR /\ ( 2 ^ n ) e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
114 |
107 112 113
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. RR ) |
115 |
103 114
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) e. RR ) |
116 |
106 115
|
readdcld |
|- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) e. RR ) |
117 |
5 107
|
readdcld |
|- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) |
118 |
|
relxp |
|- Rel ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) |
119 |
|
relres |
|- Rel ( ( J " ( 1 ... K ) ) |` { n } ) |
120 |
|
elsni |
|- ( x e. { n } -> x = n ) |
121 |
120
|
opeq1d |
|- ( x e. { n } -> <. x , y >. = <. n , y >. ) |
122 |
121
|
eleq1d |
|- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) ) |
123 |
|
vex |
|- n e. _V |
124 |
|
vex |
|- y e. _V |
125 |
123 124
|
elimasn |
|- ( y e. ( ( J " ( 1 ... K ) ) " { n } ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) |
126 |
122 125
|
bitr4di |
|- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
127 |
126
|
pm5.32i |
|- ( ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
128 |
124
|
opelresi |
|- ( <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) <-> ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) ) |
129 |
|
opelxp |
|- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
130 |
127 128 129
|
3bitr4ri |
|- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) ) |
131 |
118 119 130
|
eqrelriiv |
|- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) |` { n } ) |
132 |
|
df-res |
|- ( ( J " ( 1 ... K ) ) |` { n } ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
133 |
131 132
|
eqtri |
|- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
134 |
133
|
a1i |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
135 |
134
|
iuneq2dv |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
136 |
|
iunin2 |
|- U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
137 |
135 136
|
eqtrdi |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) ) |
138 |
|
relxp |
|- Rel ( NN X. NN ) |
139 |
|
relss |
|- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ( Rel ( NN X. NN ) -> Rel ( J " ( 1 ... K ) ) ) ) |
140 |
36 138 139
|
mpisyl |
|- ( ph -> Rel ( J " ( 1 ... K ) ) ) |
141 |
34
|
ffnd |
|- ( ph -> J Fn NN ) |
142 |
|
fveq2 |
|- ( j = ( J ` w ) -> ( 1st ` j ) = ( 1st ` ( J ` w ) ) ) |
143 |
142
|
breq1d |
|- ( j = ( J ` w ) -> ( ( 1st ` j ) <_ L <-> ( 1st ` ( J ` w ) ) <_ L ) ) |
144 |
143
|
ralima |
|- ( ( J Fn NN /\ ( 1 ... K ) C_ NN ) -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
145 |
141 26 144
|
sylancl |
|- ( ph -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
146 |
16 145
|
mpbird |
|- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L ) |
147 |
146
|
r19.21bi |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) <_ L ) |
148 |
39 81
|
eleqtrdi |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( ZZ>= ` 1 ) ) |
149 |
15
|
adantr |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> L e. ZZ ) |
150 |
|
elfz5 |
|- ( ( ( 1st ` j ) e. ( ZZ>= ` 1 ) /\ L e. ZZ ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
151 |
148 149 150
|
syl2anc |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
152 |
147 151
|
mpbird |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( 1 ... L ) ) |
153 |
152
|
ralrimiva |
|- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) ) |
154 |
|
vex |
|- x e. _V |
155 |
154 124
|
op1std |
|- ( j = <. x , y >. -> ( 1st ` j ) = x ) |
156 |
155
|
eleq1d |
|- ( j = <. x , y >. -> ( ( 1st ` j ) e. ( 1 ... L ) <-> x e. ( 1 ... L ) ) ) |
157 |
156
|
rspccv |
|- ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
158 |
153 157
|
syl |
|- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
159 |
|
opelxp |
|- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
160 |
124
|
biantru |
|- ( x e. U_ n e. ( 1 ... L ) { n } <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
161 |
|
iunid |
|- U_ n e. ( 1 ... L ) { n } = ( 1 ... L ) |
162 |
161
|
eleq2i |
|- ( x e. U_ n e. ( 1 ... L ) { n } <-> x e. ( 1 ... L ) ) |
163 |
159 160 162
|
3bitr2i |
|- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> x e. ( 1 ... L ) ) |
164 |
158 163
|
syl6ibr |
|- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) ) ) |
165 |
140 164
|
relssdv |
|- ( ph -> ( J " ( 1 ... K ) ) C_ ( U_ n e. ( 1 ... L ) { n } X. _V ) ) |
166 |
|
xpiundir |
|- ( U_ n e. ( 1 ... L ) { n } X. _V ) = U_ n e. ( 1 ... L ) ( { n } X. _V ) |
167 |
165 166
|
sseqtrdi |
|- ( ph -> ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
168 |
|
df-ss |
|- ( ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) <-> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
169 |
167 168
|
sylib |
|- ( ph -> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
170 |
137 169
|
eqtrd |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( J " ( 1 ... K ) ) ) |
171 |
170 101
|
eqeltrd |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
172 |
|
ssiun2 |
|- ( n e. ( 1 ... L ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
173 |
|
ssfi |
|- ( ( U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
174 |
171 172 173
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
175 |
|
2ndconst |
|- ( n e. _V -> ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) |
176 |
175
|
elv |
|- ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) |
177 |
|
f1oeng |
|- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
178 |
174 176 177
|
sylancl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
179 |
178
|
ensymd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
180 |
|
enfii |
|- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
181 |
174 179 180
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
182 |
|
ffvelrn |
|- ( ( F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
183 |
11 104 182
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
184 |
|
elovolmlem |
|- ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
185 |
183 184
|
sylib |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
186 |
185
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
187 |
|
imassrn |
|- ( ( J " ( 1 ... K ) ) " { n } ) C_ ran ( J " ( 1 ... K ) ) |
188 |
36
|
adantr |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
189 |
|
rnss |
|- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
190 |
188 189
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
191 |
|
rnxpid |
|- ran ( NN X. NN ) = NN |
192 |
190 191
|
sseqtrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ NN ) |
193 |
187 192
|
sstrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) C_ NN ) |
194 |
193
|
sseld |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( i e. ( ( J " ( 1 ... K ) ) " { n } ) -> i e. NN ) ) |
195 |
194
|
impr |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> i e. NN ) |
196 |
186 195
|
ffvelrnd |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
197 |
196
|
elin2d |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( RR X. RR ) ) |
198 |
|
xp2nd |
|- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
199 |
197 198
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
200 |
|
xp1st |
|- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
201 |
197 200
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
202 |
199 201
|
resubcld |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
203 |
202
|
anassrs |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
204 |
181 203
|
fsumrecl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
205 |
107 111 113
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
206 |
4 205
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
207 |
104 206
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
208 |
|
eqid |
|- ( ( abs o. - ) o. ( F ` n ) ) = ( ( abs o. - ) o. ( F ` n ) ) |
209 |
208 7
|
ovolsf |
|- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
210 |
185 209
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S : NN --> ( 0 [,) +oo ) ) |
211 |
210
|
frnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ ( 0 [,) +oo ) ) |
212 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
213 |
211 212
|
sstrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR* ) |
214 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
215 |
213 214
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
216 |
|
mnfxr |
|- -oo e. RR* |
217 |
216
|
a1i |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo e. RR* ) |
218 |
105
|
rexrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR* ) |
219 |
105
|
mnfltd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < ( vol* ` A ) ) |
220 |
104 12
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
221 |
7
|
ovollb |
|- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. ( F ` n ) ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
222 |
185 220 221
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
223 |
217 218 215 219 222
|
xrltletrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < sup ( ran S , RR* , < ) ) |
224 |
104 13
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
225 |
|
xrre |
|- ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) ) -> sup ( ran S , RR* , < ) e. RR ) |
226 |
215 207 223 224 225
|
syl22anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR ) |
227 |
|
1zzd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. ZZ ) |
228 |
208
|
ovolfsval |
|- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
229 |
185 228
|
sylan |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
230 |
208
|
ovolfsf |
|- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
231 |
185 230
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
232 |
231
|
ffvelrnda |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) e. ( 0 [,) +oo ) ) |
233 |
229 232
|
eqeltrrd |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) ) |
234 |
|
elrege0 |
|- ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) <-> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
235 |
233 234
|
sylib |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
236 |
235
|
simpld |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
237 |
235
|
simprd |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
238 |
|
supxrub |
|- ( ( ran S C_ RR* /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
239 |
213 238
|
sylan |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
240 |
239
|
ralrimiva |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> A. z e. ran S z <_ sup ( ran S , RR* , < ) ) |
241 |
|
brralrspcev |
|- ( ( sup ( ran S , RR* , < ) e. RR /\ A. z e. ran S z <_ sup ( ran S , RR* , < ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
242 |
226 240 241
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
243 |
210
|
ffnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S Fn NN ) |
244 |
|
breq1 |
|- ( z = ( S ` k ) -> ( z <_ x <-> ( S ` k ) <_ x ) ) |
245 |
244
|
ralrn |
|- ( S Fn NN -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
246 |
243 245
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
247 |
246
|
rexbidv |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( E. x e. RR A. z e. ran S z <_ x <-> E. x e. RR A. k e. NN ( S ` k ) <_ x ) ) |
248 |
242 247
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. k e. NN ( S ` k ) <_ x ) |
249 |
81 7 227 229 236 237 248
|
isumsup2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S ~~> sup ( ran S , RR , < ) ) |
250 |
7 249
|
eqbrtrrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) ) |
251 |
|
climrel |
|- Rel ~~> |
252 |
251
|
releldmi |
|- ( seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
253 |
250 252
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
254 |
81 227 181 193 229 236 237 253
|
isumless |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
255 |
81 7 227 229 236 237 248
|
isumsup |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR , < ) ) |
256 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
257 |
211 256
|
sstrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR ) |
258 |
|
1nn |
|- 1 e. NN |
259 |
210
|
fdmd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S = NN ) |
260 |
258 259
|
eleqtrrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. dom S ) |
261 |
260
|
ne0d |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S =/= (/) ) |
262 |
|
dm0rn0 |
|- ( dom S = (/) <-> ran S = (/) ) |
263 |
262
|
necon3bii |
|- ( dom S =/= (/) <-> ran S =/= (/) ) |
264 |
261 263
|
sylib |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S =/= (/) ) |
265 |
|
supxrre |
|- ( ( ran S C_ RR /\ ran S =/= (/) /\ E. x e. RR A. z e. ran S z <_ x ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
266 |
257 264 242 265
|
syl3anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
267 |
255 266
|
eqtr4d |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR* , < ) ) |
268 |
254 267
|
breqtrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sup ( ran S , RR* , < ) ) |
269 |
204 226 207 268 224
|
letrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
270 |
103 204 207 269
|
fsumle |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
271 |
|
vex |
|- i e. _V |
272 |
123 271
|
op1std |
|- ( j = <. n , i >. -> ( 1st ` j ) = n ) |
273 |
272
|
fveq2d |
|- ( j = <. n , i >. -> ( F ` ( 1st ` j ) ) = ( F ` n ) ) |
274 |
123 271
|
op2ndd |
|- ( j = <. n , i >. -> ( 2nd ` j ) = i ) |
275 |
273 274
|
fveq12d |
|- ( j = <. n , i >. -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` n ) ` i ) ) |
276 |
275
|
fveq2d |
|- ( j = <. n , i >. -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` n ) ` i ) ) ) |
277 |
275
|
fveq2d |
|- ( j = <. n , i >. -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` n ) ` i ) ) ) |
278 |
276 277
|
oveq12d |
|- ( j = <. n , i >. -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
279 |
202
|
recnd |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. CC ) |
280 |
278 103 181 279
|
fsum2d |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
281 |
170
|
sumeq1d |
|- ( ph -> sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
282 |
280 281
|
eqtrd |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
283 |
105
|
recnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. CC ) |
284 |
114
|
recnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. CC ) |
285 |
103 283 284
|
fsumadd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) = ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
286 |
270 282 285
|
3brtr3d |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
287 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
288 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
289 |
2
|
fvmpt2 |
|- ( ( n e. NN /\ ( vol* ` A ) e. RR ) -> ( G ` n ) = ( vol* ` A ) ) |
290 |
288 4 289
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( vol* ` A ) ) |
291 |
290 4
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
292 |
81 287 291
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
293 |
1
|
feq1i |
|- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
294 |
292 293
|
sylibr |
|- ( ph -> T : NN --> RR ) |
295 |
294
|
frnd |
|- ( ph -> ran T C_ RR ) |
296 |
|
ressxr |
|- RR C_ RR* |
297 |
295 296
|
sstrdi |
|- ( ph -> ran T C_ RR* ) |
298 |
104 290
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( G ` n ) = ( vol* ` A ) ) |
299 |
|
1red |
|- ( ph -> 1 e. RR ) |
300 |
|
ffvelrn |
|- ( ( J : NN --> ( NN X. NN ) /\ 1 e. NN ) -> ( J ` 1 ) e. ( NN X. NN ) ) |
301 |
34 258 300
|
sylancl |
|- ( ph -> ( J ` 1 ) e. ( NN X. NN ) ) |
302 |
|
xp1st |
|- ( ( J ` 1 ) e. ( NN X. NN ) -> ( 1st ` ( J ` 1 ) ) e. NN ) |
303 |
301 302
|
syl |
|- ( ph -> ( 1st ` ( J ` 1 ) ) e. NN ) |
304 |
303
|
nnred |
|- ( ph -> ( 1st ` ( J ` 1 ) ) e. RR ) |
305 |
15
|
zred |
|- ( ph -> L e. RR ) |
306 |
303
|
nnge1d |
|- ( ph -> 1 <_ ( 1st ` ( J ` 1 ) ) ) |
307 |
|
2fveq3 |
|- ( w = 1 -> ( 1st ` ( J ` w ) ) = ( 1st ` ( J ` 1 ) ) ) |
308 |
307
|
breq1d |
|- ( w = 1 -> ( ( 1st ` ( J ` w ) ) <_ L <-> ( 1st ` ( J ` 1 ) ) <_ L ) ) |
309 |
|
eluzfz1 |
|- ( K e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... K ) ) |
310 |
82 309
|
syl |
|- ( ph -> 1 e. ( 1 ... K ) ) |
311 |
308 16 310
|
rspcdva |
|- ( ph -> ( 1st ` ( J ` 1 ) ) <_ L ) |
312 |
299 304 305 306 311
|
letrd |
|- ( ph -> 1 <_ L ) |
313 |
|
elnnz1 |
|- ( L e. NN <-> ( L e. ZZ /\ 1 <_ L ) ) |
314 |
15 312 313
|
sylanbrc |
|- ( ph -> L e. NN ) |
315 |
314 81
|
eleqtrdi |
|- ( ph -> L e. ( ZZ>= ` 1 ) ) |
316 |
298 315 283
|
fsumser |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) = ( seq 1 ( + , G ) ` L ) ) |
317 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
318 |
287 317
|
syl |
|- ( ph -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
319 |
|
fnfvelrn |
|- ( ( seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) /\ L e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
320 |
318 315 319
|
syl2anc |
|- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
321 |
1
|
rneqi |
|- ran T = ran seq 1 ( + , G ) |
322 |
320 321
|
eleqtrrdi |
|- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran T ) |
323 |
316 322
|
eqeltrd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) |
324 |
|
supxrub |
|- ( ( ran T C_ RR* /\ sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
325 |
297 323 324
|
syl2anc |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
326 |
107
|
recnd |
|- ( ph -> B e. CC ) |
327 |
|
geo2sum |
|- ( ( L e. NN /\ B e. CC ) -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
328 |
314 326 327
|
syl2anc |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
329 |
314
|
nnnn0d |
|- ( ph -> L e. NN0 ) |
330 |
|
nnexpcl |
|- ( ( 2 e. NN /\ L e. NN0 ) -> ( 2 ^ L ) e. NN ) |
331 |
108 329 330
|
sylancr |
|- ( ph -> ( 2 ^ L ) e. NN ) |
332 |
331
|
nnrpd |
|- ( ph -> ( 2 ^ L ) e. RR+ ) |
333 |
6 332
|
rpdivcld |
|- ( ph -> ( B / ( 2 ^ L ) ) e. RR+ ) |
334 |
333
|
rpge0d |
|- ( ph -> 0 <_ ( B / ( 2 ^ L ) ) ) |
335 |
107 331
|
nndivred |
|- ( ph -> ( B / ( 2 ^ L ) ) e. RR ) |
336 |
107 335
|
subge02d |
|- ( ph -> ( 0 <_ ( B / ( 2 ^ L ) ) <-> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) ) |
337 |
334 336
|
mpbid |
|- ( ph -> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) |
338 |
328 337
|
eqbrtrd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) <_ B ) |
339 |
106 115 5 107 325 338
|
le2addd |
|- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
340 |
102 116 117 286 339
|
letrd |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
341 |
96 340
|
eqbrtrrd |
|- ( ph -> ( U ` K ) <_ ( sup ( ran T , RR* , < ) + B ) ) |