| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliun.t |
|- T = seq 1 ( + , G ) |
| 2 |
|
ovoliun.g |
|- G = ( n e. NN |-> ( vol* ` A ) ) |
| 3 |
|
ovoliun.a |
|- ( ( ph /\ n e. NN ) -> A C_ RR ) |
| 4 |
|
ovoliun.v |
|- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
| 5 |
|
ovoliun.r |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 6 |
|
ovoliun.b |
|- ( ph -> B e. RR+ ) |
| 7 |
|
ovoliun.s |
|- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
| 8 |
|
ovoliun.u |
|- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
| 9 |
|
ovoliun.h |
|- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
| 10 |
|
ovoliun.j |
|- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
| 11 |
|
ovoliun.f |
|- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 12 |
|
ovoliun.x1 |
|- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
| 13 |
|
ovoliun.x2 |
|- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 14 |
|
ovoliun.k |
|- ( ph -> K e. NN ) |
| 15 |
|
ovoliun.l1 |
|- ( ph -> L e. ZZ ) |
| 16 |
|
ovoliun.l2 |
|- ( ph -> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) |
| 17 |
|
2fveq3 |
|- ( j = ( J ` m ) -> ( F ` ( 1st ` j ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
| 18 |
|
fveq2 |
|- ( j = ( J ` m ) -> ( 2nd ` j ) = ( 2nd ` ( J ` m ) ) ) |
| 19 |
17 18
|
fveq12d |
|- ( j = ( J ` m ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 20 |
19
|
fveq2d |
|- ( j = ( J ` m ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 21 |
19
|
fveq2d |
|- ( j = ( J ` m ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 22 |
20 21
|
oveq12d |
|- ( j = ( J ` m ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 23 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
| 24 |
|
f1of1 |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN -1-1-> ( NN X. NN ) ) |
| 25 |
10 24
|
syl |
|- ( ph -> J : NN -1-1-> ( NN X. NN ) ) |
| 26 |
|
fz1ssnn |
|- ( 1 ... K ) C_ NN |
| 27 |
|
f1ores |
|- ( ( J : NN -1-1-> ( NN X. NN ) /\ ( 1 ... K ) C_ NN ) -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
| 28 |
25 26 27
|
sylancl |
|- ( ph -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
| 29 |
|
fvres |
|- ( m e. ( 1 ... K ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
| 31 |
11
|
adantr |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 32 |
|
imassrn |
|- ( J " ( 1 ... K ) ) C_ ran J |
| 33 |
|
f1of |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) |
| 34 |
10 33
|
syl |
|- ( ph -> J : NN --> ( NN X. NN ) ) |
| 35 |
34
|
frnd |
|- ( ph -> ran J C_ ( NN X. NN ) ) |
| 36 |
32 35
|
sstrid |
|- ( ph -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
| 37 |
36
|
sselda |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> j e. ( NN X. NN ) ) |
| 38 |
|
xp1st |
|- ( j e. ( NN X. NN ) -> ( 1st ` j ) e. NN ) |
| 39 |
37 38
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. NN ) |
| 40 |
31 39
|
ffvelcdmd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 41 |
|
elovolmlem |
|- ( ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 42 |
40 41
|
sylib |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 43 |
|
xp2nd |
|- ( j e. ( NN X. NN ) -> ( 2nd ` j ) e. NN ) |
| 44 |
37 43
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` j ) e. NN ) |
| 45 |
42 44
|
ffvelcdmd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 46 |
45
|
elin2d |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) ) |
| 47 |
|
xp2nd |
|- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 48 |
46 47
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 49 |
|
xp1st |
|- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 50 |
46 49
|
syl |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 51 |
48 50
|
resubcld |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
| 52 |
51
|
recnd |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. CC ) |
| 53 |
22 23 28 30 52
|
fsumf1o |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 54 |
11
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 55 |
34
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) |
| 56 |
|
xp1st |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
| 57 |
55 56
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
| 58 |
54 57
|
ffvelcdmd |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 59 |
|
elovolmlem |
|- ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 60 |
58 59
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 61 |
|
xp2nd |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
| 62 |
55 61
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
| 63 |
60 62
|
ffvelcdmd |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 64 |
63 9
|
fmptd |
|- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 65 |
|
elfznn |
|- ( m e. ( 1 ... K ) -> m e. NN ) |
| 66 |
|
eqid |
|- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
| 67 |
66
|
ovolfsval |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
| 68 |
64 65 67
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
| 69 |
65
|
adantl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> m e. NN ) |
| 70 |
|
2fveq3 |
|- ( k = m -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` m ) ) ) |
| 71 |
70
|
fveq2d |
|- ( k = m -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
| 72 |
|
2fveq3 |
|- ( k = m -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` m ) ) ) |
| 73 |
71 72
|
fveq12d |
|- ( k = m -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 74 |
|
fvex |
|- ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) e. _V |
| 75 |
73 9 74
|
fvmpt |
|- ( m e. NN -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 76 |
69 75
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 77 |
76
|
fveq2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 78 |
76
|
fveq2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 79 |
77 78
|
oveq12d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 80 |
68 79
|
eqtrd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 81 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 82 |
14 81
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` 1 ) ) |
| 83 |
|
ffvelcdm |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 84 |
64 65 83
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 85 |
84
|
elin2d |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( RR X. RR ) ) |
| 86 |
|
xp2nd |
|- ( ( H ` m ) e. ( RR X. RR ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
| 87 |
85 86
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
| 88 |
|
xp1st |
|- ( ( H ` m ) e. ( RR X. RR ) -> ( 1st ` ( H ` m ) ) e. RR ) |
| 89 |
85 88
|
syl |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) e. RR ) |
| 90 |
87 89
|
resubcld |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. RR ) |
| 91 |
90
|
recnd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. CC ) |
| 92 |
79 91
|
eqeltrrd |
|- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) e. CC ) |
| 93 |
80 82 92
|
fsumser |
|- ( ph -> sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
| 94 |
53 93
|
eqtrd |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
| 95 |
8
|
fveq1i |
|- ( U ` K ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) |
| 96 |
94 95
|
eqtr4di |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( U ` K ) ) |
| 97 |
|
f1oeng |
|- ( ( ( 1 ... K ) e. Fin /\ ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
| 98 |
23 28 97
|
syl2anc |
|- ( ph -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
| 99 |
98
|
ensymd |
|- ( ph -> ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) |
| 100 |
|
enfii |
|- ( ( ( 1 ... K ) e. Fin /\ ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) -> ( J " ( 1 ... K ) ) e. Fin ) |
| 101 |
23 99 100
|
syl2anc |
|- ( ph -> ( J " ( 1 ... K ) ) e. Fin ) |
| 102 |
101 51
|
fsumrecl |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
| 103 |
|
fzfid |
|- ( ph -> ( 1 ... L ) e. Fin ) |
| 104 |
|
elfznn |
|- ( n e. ( 1 ... L ) -> n e. NN ) |
| 105 |
104 4
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR ) |
| 106 |
103 105
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. RR ) |
| 107 |
6
|
rpred |
|- ( ph -> B e. RR ) |
| 108 |
|
2nn |
|- 2 e. NN |
| 109 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 110 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 111 |
108 109 110
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 112 |
104 111
|
syl |
|- ( n e. ( 1 ... L ) -> ( 2 ^ n ) e. NN ) |
| 113 |
|
nndivre |
|- ( ( B e. RR /\ ( 2 ^ n ) e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
| 114 |
107 112 113
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. RR ) |
| 115 |
103 114
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) e. RR ) |
| 116 |
106 115
|
readdcld |
|- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) e. RR ) |
| 117 |
5 107
|
readdcld |
|- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) |
| 118 |
|
relxp |
|- Rel ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) |
| 119 |
|
relres |
|- Rel ( ( J " ( 1 ... K ) ) |` { n } ) |
| 120 |
|
elsni |
|- ( x e. { n } -> x = n ) |
| 121 |
120
|
opeq1d |
|- ( x e. { n } -> <. x , y >. = <. n , y >. ) |
| 122 |
121
|
eleq1d |
|- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) ) |
| 123 |
|
vex |
|- n e. _V |
| 124 |
|
vex |
|- y e. _V |
| 125 |
123 124
|
elimasn |
|- ( y e. ( ( J " ( 1 ... K ) ) " { n } ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) |
| 126 |
122 125
|
bitr4di |
|- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 127 |
126
|
pm5.32i |
|- ( ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 128 |
124
|
opelresi |
|- ( <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) <-> ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) ) |
| 129 |
|
opelxp |
|- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 130 |
127 128 129
|
3bitr4ri |
|- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) ) |
| 131 |
118 119 130
|
eqrelriiv |
|- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) |` { n } ) |
| 132 |
|
df-res |
|- ( ( J " ( 1 ... K ) ) |` { n } ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
| 133 |
131 132
|
eqtri |
|- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
| 134 |
133
|
a1i |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
| 135 |
134
|
iuneq2dv |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
| 136 |
|
iunin2 |
|- U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
| 137 |
135 136
|
eqtrdi |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) ) |
| 138 |
|
relxp |
|- Rel ( NN X. NN ) |
| 139 |
|
relss |
|- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ( Rel ( NN X. NN ) -> Rel ( J " ( 1 ... K ) ) ) ) |
| 140 |
36 138 139
|
mpisyl |
|- ( ph -> Rel ( J " ( 1 ... K ) ) ) |
| 141 |
34
|
ffnd |
|- ( ph -> J Fn NN ) |
| 142 |
|
fveq2 |
|- ( j = ( J ` w ) -> ( 1st ` j ) = ( 1st ` ( J ` w ) ) ) |
| 143 |
142
|
breq1d |
|- ( j = ( J ` w ) -> ( ( 1st ` j ) <_ L <-> ( 1st ` ( J ` w ) ) <_ L ) ) |
| 144 |
143
|
ralima |
|- ( ( J Fn NN /\ ( 1 ... K ) C_ NN ) -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
| 145 |
141 26 144
|
sylancl |
|- ( ph -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
| 146 |
16 145
|
mpbird |
|- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L ) |
| 147 |
146
|
r19.21bi |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) <_ L ) |
| 148 |
39 81
|
eleqtrdi |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( ZZ>= ` 1 ) ) |
| 149 |
15
|
adantr |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> L e. ZZ ) |
| 150 |
|
elfz5 |
|- ( ( ( 1st ` j ) e. ( ZZ>= ` 1 ) /\ L e. ZZ ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
| 151 |
148 149 150
|
syl2anc |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
| 152 |
147 151
|
mpbird |
|- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( 1 ... L ) ) |
| 153 |
152
|
ralrimiva |
|- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) ) |
| 154 |
|
vex |
|- x e. _V |
| 155 |
154 124
|
op1std |
|- ( j = <. x , y >. -> ( 1st ` j ) = x ) |
| 156 |
155
|
eleq1d |
|- ( j = <. x , y >. -> ( ( 1st ` j ) e. ( 1 ... L ) <-> x e. ( 1 ... L ) ) ) |
| 157 |
156
|
rspccv |
|- ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
| 158 |
153 157
|
syl |
|- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
| 159 |
|
opelxp |
|- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
| 160 |
124
|
biantru |
|- ( x e. U_ n e. ( 1 ... L ) { n } <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
| 161 |
|
iunid |
|- U_ n e. ( 1 ... L ) { n } = ( 1 ... L ) |
| 162 |
161
|
eleq2i |
|- ( x e. U_ n e. ( 1 ... L ) { n } <-> x e. ( 1 ... L ) ) |
| 163 |
159 160 162
|
3bitr2i |
|- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> x e. ( 1 ... L ) ) |
| 164 |
158 163
|
imbitrrdi |
|- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) ) ) |
| 165 |
140 164
|
relssdv |
|- ( ph -> ( J " ( 1 ... K ) ) C_ ( U_ n e. ( 1 ... L ) { n } X. _V ) ) |
| 166 |
|
xpiundir |
|- ( U_ n e. ( 1 ... L ) { n } X. _V ) = U_ n e. ( 1 ... L ) ( { n } X. _V ) |
| 167 |
165 166
|
sseqtrdi |
|- ( ph -> ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
| 168 |
|
dfss2 |
|- ( ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) <-> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
| 169 |
167 168
|
sylib |
|- ( ph -> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
| 170 |
137 169
|
eqtrd |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( J " ( 1 ... K ) ) ) |
| 171 |
170 101
|
eqeltrd |
|- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
| 172 |
|
ssiun2 |
|- ( n e. ( 1 ... L ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 173 |
|
ssfi |
|- ( ( U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
| 174 |
171 172 173
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
| 175 |
|
2ndconst |
|- ( n e. _V -> ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) |
| 176 |
175
|
elv |
|- ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) |
| 177 |
|
f1oeng |
|- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
| 178 |
174 176 177
|
sylancl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
| 179 |
178
|
ensymd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 180 |
|
enfii |
|- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
| 181 |
174 179 180
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
| 182 |
|
ffvelcdm |
|- ( ( F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 183 |
11 104 182
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 184 |
|
elovolmlem |
|- ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 185 |
183 184
|
sylib |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 186 |
185
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 187 |
|
imassrn |
|- ( ( J " ( 1 ... K ) ) " { n } ) C_ ran ( J " ( 1 ... K ) ) |
| 188 |
36
|
adantr |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
| 189 |
|
rnss |
|- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
| 190 |
188 189
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
| 191 |
|
rnxpid |
|- ran ( NN X. NN ) = NN |
| 192 |
190 191
|
sseqtrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ NN ) |
| 193 |
187 192
|
sstrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) C_ NN ) |
| 194 |
193
|
sseld |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( i e. ( ( J " ( 1 ... K ) ) " { n } ) -> i e. NN ) ) |
| 195 |
194
|
impr |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> i e. NN ) |
| 196 |
186 195
|
ffvelcdmd |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 197 |
196
|
elin2d |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( RR X. RR ) ) |
| 198 |
|
xp2nd |
|- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
| 199 |
197 198
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
| 200 |
|
xp1st |
|- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
| 201 |
197 200
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
| 202 |
199 201
|
resubcld |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 203 |
202
|
anassrs |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 204 |
181 203
|
fsumrecl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 205 |
107 111 113
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
| 206 |
4 205
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
| 207 |
104 206
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
| 208 |
|
eqid |
|- ( ( abs o. - ) o. ( F ` n ) ) = ( ( abs o. - ) o. ( F ` n ) ) |
| 209 |
208 7
|
ovolsf |
|- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 210 |
185 209
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 211 |
210
|
frnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ ( 0 [,) +oo ) ) |
| 212 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 213 |
211 212
|
sstrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR* ) |
| 214 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
| 215 |
213 214
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
| 216 |
|
mnfxr |
|- -oo e. RR* |
| 217 |
216
|
a1i |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo e. RR* ) |
| 218 |
105
|
rexrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR* ) |
| 219 |
105
|
mnfltd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < ( vol* ` A ) ) |
| 220 |
104 12
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
| 221 |
7
|
ovollb |
|- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. ( F ` n ) ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 222 |
185 220 221
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 223 |
217 218 215 219 222
|
xrltletrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < sup ( ran S , RR* , < ) ) |
| 224 |
104 13
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 225 |
|
xrre |
|- ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) ) -> sup ( ran S , RR* , < ) e. RR ) |
| 226 |
215 207 223 224 225
|
syl22anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR ) |
| 227 |
|
1zzd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. ZZ ) |
| 228 |
208
|
ovolfsval |
|- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 229 |
185 228
|
sylan |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 230 |
208
|
ovolfsf |
|- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
| 231 |
185 230
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
| 232 |
231
|
ffvelcdmda |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) e. ( 0 [,) +oo ) ) |
| 233 |
229 232
|
eqeltrrd |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) ) |
| 234 |
|
elrege0 |
|- ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) <-> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
| 235 |
233 234
|
sylib |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
| 236 |
235
|
simpld |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 237 |
235
|
simprd |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 238 |
|
supxrub |
|- ( ( ran S C_ RR* /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
| 239 |
213 238
|
sylan |
|- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
| 240 |
239
|
ralrimiva |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> A. z e. ran S z <_ sup ( ran S , RR* , < ) ) |
| 241 |
|
brralrspcev |
|- ( ( sup ( ran S , RR* , < ) e. RR /\ A. z e. ran S z <_ sup ( ran S , RR* , < ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
| 242 |
226 240 241
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
| 243 |
210
|
ffnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S Fn NN ) |
| 244 |
|
breq1 |
|- ( z = ( S ` k ) -> ( z <_ x <-> ( S ` k ) <_ x ) ) |
| 245 |
244
|
ralrn |
|- ( S Fn NN -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
| 246 |
243 245
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
| 247 |
246
|
rexbidv |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( E. x e. RR A. z e. ran S z <_ x <-> E. x e. RR A. k e. NN ( S ` k ) <_ x ) ) |
| 248 |
242 247
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. k e. NN ( S ` k ) <_ x ) |
| 249 |
81 7 227 229 236 237 248
|
isumsup2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> S ~~> sup ( ran S , RR , < ) ) |
| 250 |
7 249
|
eqbrtrrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) ) |
| 251 |
|
climrel |
|- Rel ~~> |
| 252 |
251
|
releldmi |
|- ( seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
| 253 |
250 252
|
syl |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
| 254 |
81 227 181 193 229 236 237 253
|
isumless |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 255 |
81 7 227 229 236 237 248
|
isumsup |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR , < ) ) |
| 256 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 257 |
211 256
|
sstrdi |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR ) |
| 258 |
|
1nn |
|- 1 e. NN |
| 259 |
210
|
fdmd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S = NN ) |
| 260 |
258 259
|
eleqtrrid |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. dom S ) |
| 261 |
260
|
ne0d |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S =/= (/) ) |
| 262 |
|
dm0rn0 |
|- ( dom S = (/) <-> ran S = (/) ) |
| 263 |
262
|
necon3bii |
|- ( dom S =/= (/) <-> ran S =/= (/) ) |
| 264 |
261 263
|
sylib |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S =/= (/) ) |
| 265 |
|
supxrre |
|- ( ( ran S C_ RR /\ ran S =/= (/) /\ E. x e. RR A. z e. ran S z <_ x ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
| 266 |
257 264 242 265
|
syl3anc |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
| 267 |
255 266
|
eqtr4d |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR* , < ) ) |
| 268 |
254 267
|
breqtrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sup ( ran S , RR* , < ) ) |
| 269 |
204 226 207 268 224
|
letrd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 270 |
103 204 207 269
|
fsumle |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 271 |
|
vex |
|- i e. _V |
| 272 |
123 271
|
op1std |
|- ( j = <. n , i >. -> ( 1st ` j ) = n ) |
| 273 |
272
|
fveq2d |
|- ( j = <. n , i >. -> ( F ` ( 1st ` j ) ) = ( F ` n ) ) |
| 274 |
123 271
|
op2ndd |
|- ( j = <. n , i >. -> ( 2nd ` j ) = i ) |
| 275 |
273 274
|
fveq12d |
|- ( j = <. n , i >. -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` n ) ` i ) ) |
| 276 |
275
|
fveq2d |
|- ( j = <. n , i >. -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` n ) ` i ) ) ) |
| 277 |
275
|
fveq2d |
|- ( j = <. n , i >. -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` n ) ` i ) ) ) |
| 278 |
276 277
|
oveq12d |
|- ( j = <. n , i >. -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 279 |
202
|
recnd |
|- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. CC ) |
| 280 |
278 103 181 279
|
fsum2d |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 281 |
170
|
sumeq1d |
|- ( ph -> sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 282 |
280 281
|
eqtrd |
|- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 283 |
105
|
recnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. CC ) |
| 284 |
114
|
recnd |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. CC ) |
| 285 |
103 283 284
|
fsumadd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) = ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
| 286 |
270 282 285
|
3brtr3d |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
| 287 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 288 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 289 |
2
|
fvmpt2 |
|- ( ( n e. NN /\ ( vol* ` A ) e. RR ) -> ( G ` n ) = ( vol* ` A ) ) |
| 290 |
288 4 289
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( vol* ` A ) ) |
| 291 |
290 4
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 292 |
81 287 291
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 293 |
1
|
feq1i |
|- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
| 294 |
292 293
|
sylibr |
|- ( ph -> T : NN --> RR ) |
| 295 |
294
|
frnd |
|- ( ph -> ran T C_ RR ) |
| 296 |
|
ressxr |
|- RR C_ RR* |
| 297 |
295 296
|
sstrdi |
|- ( ph -> ran T C_ RR* ) |
| 298 |
104 290
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... L ) ) -> ( G ` n ) = ( vol* ` A ) ) |
| 299 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 300 |
|
ffvelcdm |
|- ( ( J : NN --> ( NN X. NN ) /\ 1 e. NN ) -> ( J ` 1 ) e. ( NN X. NN ) ) |
| 301 |
34 258 300
|
sylancl |
|- ( ph -> ( J ` 1 ) e. ( NN X. NN ) ) |
| 302 |
|
xp1st |
|- ( ( J ` 1 ) e. ( NN X. NN ) -> ( 1st ` ( J ` 1 ) ) e. NN ) |
| 303 |
301 302
|
syl |
|- ( ph -> ( 1st ` ( J ` 1 ) ) e. NN ) |
| 304 |
303
|
nnred |
|- ( ph -> ( 1st ` ( J ` 1 ) ) e. RR ) |
| 305 |
15
|
zred |
|- ( ph -> L e. RR ) |
| 306 |
303
|
nnge1d |
|- ( ph -> 1 <_ ( 1st ` ( J ` 1 ) ) ) |
| 307 |
|
2fveq3 |
|- ( w = 1 -> ( 1st ` ( J ` w ) ) = ( 1st ` ( J ` 1 ) ) ) |
| 308 |
307
|
breq1d |
|- ( w = 1 -> ( ( 1st ` ( J ` w ) ) <_ L <-> ( 1st ` ( J ` 1 ) ) <_ L ) ) |
| 309 |
|
eluzfz1 |
|- ( K e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... K ) ) |
| 310 |
82 309
|
syl |
|- ( ph -> 1 e. ( 1 ... K ) ) |
| 311 |
308 16 310
|
rspcdva |
|- ( ph -> ( 1st ` ( J ` 1 ) ) <_ L ) |
| 312 |
299 304 305 306 311
|
letrd |
|- ( ph -> 1 <_ L ) |
| 313 |
|
elnnz1 |
|- ( L e. NN <-> ( L e. ZZ /\ 1 <_ L ) ) |
| 314 |
15 312 313
|
sylanbrc |
|- ( ph -> L e. NN ) |
| 315 |
314 81
|
eleqtrdi |
|- ( ph -> L e. ( ZZ>= ` 1 ) ) |
| 316 |
298 315 283
|
fsumser |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) = ( seq 1 ( + , G ) ` L ) ) |
| 317 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
| 318 |
287 317
|
syl |
|- ( ph -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
| 319 |
|
fnfvelrn |
|- ( ( seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) /\ L e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
| 320 |
318 315 319
|
syl2anc |
|- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
| 321 |
1
|
rneqi |
|- ran T = ran seq 1 ( + , G ) |
| 322 |
320 321
|
eleqtrrdi |
|- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran T ) |
| 323 |
316 322
|
eqeltrd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) |
| 324 |
|
supxrub |
|- ( ( ran T C_ RR* /\ sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
| 325 |
297 323 324
|
syl2anc |
|- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
| 326 |
107
|
recnd |
|- ( ph -> B e. CC ) |
| 327 |
|
geo2sum |
|- ( ( L e. NN /\ B e. CC ) -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
| 328 |
314 326 327
|
syl2anc |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
| 329 |
314
|
nnnn0d |
|- ( ph -> L e. NN0 ) |
| 330 |
|
nnexpcl |
|- ( ( 2 e. NN /\ L e. NN0 ) -> ( 2 ^ L ) e. NN ) |
| 331 |
108 329 330
|
sylancr |
|- ( ph -> ( 2 ^ L ) e. NN ) |
| 332 |
331
|
nnrpd |
|- ( ph -> ( 2 ^ L ) e. RR+ ) |
| 333 |
6 332
|
rpdivcld |
|- ( ph -> ( B / ( 2 ^ L ) ) e. RR+ ) |
| 334 |
333
|
rpge0d |
|- ( ph -> 0 <_ ( B / ( 2 ^ L ) ) ) |
| 335 |
107 331
|
nndivred |
|- ( ph -> ( B / ( 2 ^ L ) ) e. RR ) |
| 336 |
107 335
|
subge02d |
|- ( ph -> ( 0 <_ ( B / ( 2 ^ L ) ) <-> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) ) |
| 337 |
334 336
|
mpbid |
|- ( ph -> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) |
| 338 |
328 337
|
eqbrtrd |
|- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) <_ B ) |
| 339 |
106 115 5 107 325 338
|
le2addd |
|- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 340 |
102 116 117 286 339
|
letrd |
|- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 341 |
96 340
|
eqbrtrrd |
|- ( ph -> ( U ` K ) <_ ( sup ( ran T , RR* , < ) + B ) ) |