| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovoliun.t |  |-  T = seq 1 ( + , G ) | 
						
							| 2 |  | ovoliun.g |  |-  G = ( n e. NN |-> ( vol* ` A ) ) | 
						
							| 3 |  | ovoliun.a |  |-  ( ( ph /\ n e. NN ) -> A C_ RR ) | 
						
							| 4 |  | ovoliun.v |  |-  ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) | 
						
							| 5 |  | ovoliun.r |  |-  ( ph -> sup ( ran T , RR* , < ) e. RR ) | 
						
							| 6 |  | ovoliun.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 7 |  | ovoliun.s |  |-  S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) | 
						
							| 8 |  | ovoliun.u |  |-  U = seq 1 ( + , ( ( abs o. - ) o. H ) ) | 
						
							| 9 |  | ovoliun.h |  |-  H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) | 
						
							| 10 |  | ovoliun.j |  |-  ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) | 
						
							| 11 |  | ovoliun.f |  |-  ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 12 |  | ovoliun.x1 |  |-  ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) | 
						
							| 13 |  | ovoliun.x2 |  |-  ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) | 
						
							| 14 | 3 | ralrimiva |  |-  ( ph -> A. n e. NN A C_ RR ) | 
						
							| 15 |  | iunss |  |-  ( U_ n e. NN A C_ RR <-> A. n e. NN A C_ RR ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ph -> U_ n e. NN A C_ RR ) | 
						
							| 17 |  | ovolcl |  |-  ( U_ n e. NN A C_ RR -> ( vol* ` U_ n e. NN A ) e. RR* ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( vol* ` U_ n e. NN A ) e. RR* ) | 
						
							| 19 | 11 | adantr |  |-  ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 20 |  | f1of |  |-  ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) | 
						
							| 21 | 10 20 | syl |  |-  ( ph -> J : NN --> ( NN X. NN ) ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) | 
						
							| 23 |  | xp1st |  |-  ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) | 
						
							| 25 | 19 24 | ffvelcdmd |  |-  ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 26 |  | elovolmlem |  |-  ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 27 | 25 26 | sylib |  |-  ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 28 |  | xp2nd |  |-  ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) | 
						
							| 29 | 22 28 | syl |  |-  ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) | 
						
							| 30 | 27 29 | ffvelcdmd |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 31 | 30 9 | fmptd |  |-  ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 32 |  | eqid |  |-  ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) | 
						
							| 33 | 32 8 | ovolsf |  |-  ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) | 
						
							| 34 |  | frn |  |-  ( U : NN --> ( 0 [,) +oo ) -> ran U C_ ( 0 [,) +oo ) ) | 
						
							| 35 | 31 33 34 | 3syl |  |-  ( ph -> ran U C_ ( 0 [,) +oo ) ) | 
						
							| 36 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 37 | 35 36 | sstrdi |  |-  ( ph -> ran U C_ RR* ) | 
						
							| 38 |  | supxrcl |  |-  ( ran U C_ RR* -> sup ( ran U , RR* , < ) e. RR* ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> sup ( ran U , RR* , < ) e. RR* ) | 
						
							| 40 | 6 | rpred |  |-  ( ph -> B e. RR ) | 
						
							| 41 | 5 40 | readdcld |  |-  ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) | 
						
							| 42 | 41 | rexrd |  |-  ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR* ) | 
						
							| 43 |  | eliun |  |-  ( z e. U_ n e. NN A <-> E. n e. NN z e. A ) | 
						
							| 44 | 12 | 3adant3 |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) | 
						
							| 45 | 3 | 3adant3 |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> A C_ RR ) | 
						
							| 46 | 11 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 47 |  | elovolmlem |  |-  ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 48 | 46 47 | sylib |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 49 | 48 | 3adant3 |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 50 |  | ovolfioo |  |-  ( ( A C_ RR /\ ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) | 
						
							| 51 | 45 49 50 | syl2anc |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) | 
						
							| 52 | 44 51 | mpbid |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) | 
						
							| 53 |  | simp3 |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> z e. A ) | 
						
							| 54 |  | rsp |  |-  ( A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( z e. A -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) | 
						
							| 55 | 52 53 54 | sylc |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) | 
						
							| 56 |  | simpl1 |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ph ) | 
						
							| 57 |  | f1ocnv |  |-  ( J : NN -1-1-onto-> ( NN X. NN ) -> `' J : ( NN X. NN ) -1-1-onto-> NN ) | 
						
							| 58 |  | f1of |  |-  ( `' J : ( NN X. NN ) -1-1-onto-> NN -> `' J : ( NN X. NN ) --> NN ) | 
						
							| 59 | 56 10 57 58 | 4syl |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> `' J : ( NN X. NN ) --> NN ) | 
						
							| 60 |  | simpl2 |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> n e. NN ) | 
						
							| 61 |  | simpr |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> j e. NN ) | 
						
							| 62 | 59 60 61 | fovcdmd |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( n `' J j ) e. NN ) | 
						
							| 63 |  | 2fveq3 |  |-  ( k = ( n `' J j ) -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` ( n `' J j ) ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( k = ( n `' J j ) -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ) | 
						
							| 65 |  | 2fveq3 |  |-  ( k = ( n `' J j ) -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` ( n `' J j ) ) ) ) | 
						
							| 66 | 64 65 | fveq12d |  |-  ( k = ( n `' J j ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) | 
						
							| 67 |  | fvex |  |-  ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) e. _V | 
						
							| 68 | 66 9 67 | fvmpt |  |-  ( ( n `' J j ) e. NN -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) | 
						
							| 69 | 62 68 | syl |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) | 
						
							| 70 |  | df-ov |  |-  ( n `' J j ) = ( `' J ` <. n , j >. ) | 
						
							| 71 | 70 | fveq2i |  |-  ( J ` ( n `' J j ) ) = ( J ` ( `' J ` <. n , j >. ) ) | 
						
							| 72 | 56 10 | syl |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> J : NN -1-1-onto-> ( NN X. NN ) ) | 
						
							| 73 | 60 61 | opelxpd |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> <. n , j >. e. ( NN X. NN ) ) | 
						
							| 74 |  | f1ocnvfv2 |  |-  ( ( J : NN -1-1-onto-> ( NN X. NN ) /\ <. n , j >. e. ( NN X. NN ) ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) | 
						
							| 75 | 72 73 74 | syl2anc |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) | 
						
							| 76 | 71 75 | eqtrid |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( n `' J j ) ) = <. n , j >. ) | 
						
							| 77 | 76 | fveq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = ( 1st ` <. n , j >. ) ) | 
						
							| 78 |  | vex |  |-  n e. _V | 
						
							| 79 |  | vex |  |-  j e. _V | 
						
							| 80 | 78 79 | op1st |  |-  ( 1st ` <. n , j >. ) = n | 
						
							| 81 | 77 80 | eqtrdi |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = n ) | 
						
							| 82 | 81 | fveq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) = ( F ` n ) ) | 
						
							| 83 | 76 | fveq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = ( 2nd ` <. n , j >. ) ) | 
						
							| 84 | 78 79 | op2nd |  |-  ( 2nd ` <. n , j >. ) = j | 
						
							| 85 | 83 84 | eqtrdi |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = j ) | 
						
							| 86 | 82 85 | fveq12d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) = ( ( F ` n ) ` j ) ) | 
						
							| 87 | 69 86 | eqtrd |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` n ) ` j ) ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( H ` ( n `' J j ) ) ) = ( 1st ` ( ( F ` n ) ` j ) ) ) | 
						
							| 89 | 88 | breq1d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z <-> ( 1st ` ( ( F ` n ) ` j ) ) < z ) ) | 
						
							| 90 | 87 | fveq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( H ` ( n `' J j ) ) ) = ( 2nd ` ( ( F ` n ) ` j ) ) ) | 
						
							| 91 | 90 | breq2d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( z < ( 2nd ` ( H ` ( n `' J j ) ) ) <-> z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) | 
						
							| 92 | 89 91 | anbi12d |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) <-> ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) | 
						
							| 93 | 92 | biimprd |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) | 
						
							| 94 |  | 2fveq3 |  |-  ( m = ( n `' J j ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( H ` ( n `' J j ) ) ) ) | 
						
							| 95 | 94 | breq1d |  |-  ( m = ( n `' J j ) -> ( ( 1st ` ( H ` m ) ) < z <-> ( 1st ` ( H ` ( n `' J j ) ) ) < z ) ) | 
						
							| 96 |  | 2fveq3 |  |-  ( m = ( n `' J j ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( H ` ( n `' J j ) ) ) ) | 
						
							| 97 | 96 | breq2d |  |-  ( m = ( n `' J j ) -> ( z < ( 2nd ` ( H ` m ) ) <-> z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) | 
						
							| 98 | 95 97 | anbi12d |  |-  ( m = ( n `' J j ) -> ( ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) <-> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) | 
						
							| 99 | 98 | rspcev |  |-  ( ( ( n `' J j ) e. NN /\ ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) | 
						
							| 100 | 62 93 99 | syl6an |  |-  ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 101 | 100 | rexlimdva |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> ( E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 102 | 55 101 | mpd |  |-  ( ( ph /\ n e. NN /\ z e. A ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) | 
						
							| 103 | 102 | rexlimdv3a |  |-  ( ph -> ( E. n e. NN z e. A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 104 | 43 103 | biimtrid |  |-  ( ph -> ( z e. U_ n e. NN A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 105 | 104 | ralrimiv |  |-  ( ph -> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) | 
						
							| 106 |  | ovolfioo |  |-  ( ( U_ n e. NN A C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 107 | 16 31 106 | syl2anc |  |-  ( ph -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) | 
						
							| 108 | 105 107 | mpbird |  |-  ( ph -> U_ n e. NN A C_ U. ran ( (,) o. H ) ) | 
						
							| 109 | 8 | ovollb |  |-  ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ U_ n e. NN A C_ U. ran ( (,) o. H ) ) -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) | 
						
							| 110 | 31 108 109 | syl2anc |  |-  ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) | 
						
							| 111 |  | fzfi |  |-  ( 1 ... j ) e. Fin | 
						
							| 112 |  | elfznn |  |-  ( w e. ( 1 ... j ) -> w e. NN ) | 
						
							| 113 |  | ffvelcdm |  |-  ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( J ` w ) e. ( NN X. NN ) ) | 
						
							| 114 |  | xp1st |  |-  ( ( J ` w ) e. ( NN X. NN ) -> ( 1st ` ( J ` w ) ) e. NN ) | 
						
							| 115 |  | nnre |  |-  ( ( 1st ` ( J ` w ) ) e. NN -> ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 116 | 113 114 115 | 3syl |  |-  ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 117 | 21 112 116 | syl2an |  |-  ( ( ph /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 118 | 117 | ralrimiva |  |-  ( ph -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ph /\ j e. NN ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 120 |  | fimaxre3 |  |-  ( ( ( 1 ... j ) e. Fin /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) | 
						
							| 121 | 111 119 120 | sylancr |  |-  ( ( ph /\ j e. NN ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) | 
						
							| 122 |  | fllep1 |  |-  ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 123 | 122 | ad2antlr |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 124 | 117 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) | 
						
							| 125 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x e. RR ) | 
						
							| 126 |  | flcl |  |-  ( x e. RR -> ( |_ ` x ) e. ZZ ) | 
						
							| 127 | 126 | peano2zd |  |-  ( x e. RR -> ( ( |_ ` x ) + 1 ) e. ZZ ) | 
						
							| 128 | 127 | zred |  |-  ( x e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) | 
						
							| 129 | 128 | ad2antlr |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( |_ ` x ) + 1 ) e. RR ) | 
						
							| 130 |  | letr |  |-  ( ( ( 1st ` ( J ` w ) ) e. RR /\ x e. RR /\ ( ( |_ ` x ) + 1 ) e. RR ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 131 | 124 125 129 130 | syl3anc |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 132 | 123 131 | mpan2d |  |-  ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( 1st ` ( J ` w ) ) <_ x -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 133 | 132 | ralimdva |  |-  ( ( ph /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 134 | 133 | adantlr |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 135 |  | simpll |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ph ) | 
						
							| 136 | 135 3 | sylan |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ RR ) | 
						
							| 137 | 135 4 | sylan |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> ( vol* ` A ) e. RR ) | 
						
							| 138 | 135 5 | syl |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> sup ( ran T , RR* , < ) e. RR ) | 
						
							| 139 | 135 6 | syl |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> B e. RR+ ) | 
						
							| 140 | 135 10 | syl |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> J : NN -1-1-onto-> ( NN X. NN ) ) | 
						
							| 141 | 135 11 | syl |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 142 | 135 12 | sylan |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) | 
						
							| 143 | 135 13 | sylan |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) | 
						
							| 144 |  | simplr |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> j e. NN ) | 
						
							| 145 | 127 | ad2antrl |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( ( |_ ` x ) + 1 ) e. ZZ ) | 
						
							| 146 |  | simprr |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 147 | 1 2 136 137 138 139 7 8 9 140 141 142 143 144 145 146 | ovoliunlem1 |  |-  ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) | 
						
							| 148 | 147 | expr |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 149 | 134 148 | syld |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 150 | 149 | rexlimdva |  |-  ( ( ph /\ j e. NN ) -> ( E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 151 | 121 150 | mpd |  |-  ( ( ph /\ j e. NN ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) | 
						
							| 152 | 151 | ralrimiva |  |-  ( ph -> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) | 
						
							| 153 |  | ffn |  |-  ( U : NN --> ( 0 [,) +oo ) -> U Fn NN ) | 
						
							| 154 |  | breq1 |  |-  ( z = ( U ` j ) -> ( z <_ ( sup ( ran T , RR* , < ) + B ) <-> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 155 | 154 | ralrn |  |-  ( U Fn NN -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 156 | 31 33 153 155 | 4syl |  |-  ( ph -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 157 | 152 156 | mpbird |  |-  ( ph -> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) | 
						
							| 158 |  | supxrleub |  |-  ( ( ran U C_ RR* /\ ( sup ( ran T , RR* , < ) + B ) e. RR* ) -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 159 | 37 42 158 | syl2anc |  |-  ( ph -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) | 
						
							| 160 | 157 159 | mpbird |  |-  ( ph -> sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) ) | 
						
							| 161 | 18 39 42 110 160 | xrletrd |  |-  ( ph -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + B ) ) |