| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iuneq1 |  |-  ( A = (/) -> U_ n e. A B = U_ n e. (/) B ) | 
						
							| 2 |  | 0iun |  |-  U_ n e. (/) B = (/) | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( A = (/) -> U_ n e. A B = (/) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( A = (/) -> ( vol* ` U_ n e. A B ) = ( vol* ` (/) ) ) | 
						
							| 5 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( A = (/) -> ( vol* ` U_ n e. A B ) = 0 ) | 
						
							| 7 | 6 | a1i |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( A = (/) -> ( vol* ` U_ n e. A B ) = 0 ) ) | 
						
							| 8 |  | reldom |  |-  Rel ~<_ | 
						
							| 9 | 8 | brrelex1i |  |-  ( A ~<_ NN -> A e. _V ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> A e. _V ) | 
						
							| 11 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 13 |  | fodomr |  |-  ( ( (/) ~< A /\ A ~<_ NN ) -> E. f f : NN -onto-> A ) | 
						
							| 14 | 13 | expcom |  |-  ( A ~<_ NN -> ( (/) ~< A -> E. f f : NN -onto-> A ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A -> E. f f : NN -onto-> A ) ) | 
						
							| 16 |  | eliun |  |-  ( x e. U_ n e. A B <-> E. n e. A x e. B ) | 
						
							| 17 |  | nfv |  |-  F/ n f : NN -onto-> A | 
						
							| 18 |  | nfcv |  |-  F/_ n NN | 
						
							| 19 |  | nfcsb1v |  |-  F/_ n [_ ( f ` k ) / n ]_ B | 
						
							| 20 | 18 19 | nfiun |  |-  F/_ n U_ k e. NN [_ ( f ` k ) / n ]_ B | 
						
							| 21 | 20 | nfcri |  |-  F/ n x e. U_ k e. NN [_ ( f ` k ) / n ]_ B | 
						
							| 22 |  | foelrn |  |-  ( ( f : NN -onto-> A /\ n e. A ) -> E. k e. NN n = ( f ` k ) ) | 
						
							| 23 | 22 | ex |  |-  ( f : NN -onto-> A -> ( n e. A -> E. k e. NN n = ( f ` k ) ) ) | 
						
							| 24 |  | csbeq1a |  |-  ( n = ( f ` k ) -> B = [_ ( f ` k ) / n ]_ B ) | 
						
							| 25 | 24 | adantl |  |-  ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> B = [_ ( f ` k ) / n ]_ B ) | 
						
							| 26 | 25 | eleq2d |  |-  ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> ( x e. B <-> x e. [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 27 | 26 | biimpd |  |-  ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> ( x e. B -> x e. [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 28 | 27 | impancom |  |-  ( ( f : NN -onto-> A /\ x e. B ) -> ( n = ( f ` k ) -> x e. [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 29 | 28 | reximdv |  |-  ( ( f : NN -onto-> A /\ x e. B ) -> ( E. k e. NN n = ( f ` k ) -> E. k e. NN x e. [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 30 |  | eliun |  |-  ( x e. U_ k e. NN [_ ( f ` k ) / n ]_ B <-> E. k e. NN x e. [_ ( f ` k ) / n ]_ B ) | 
						
							| 31 | 29 30 | imbitrrdi |  |-  ( ( f : NN -onto-> A /\ x e. B ) -> ( E. k e. NN n = ( f ` k ) -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 32 | 31 | ex |  |-  ( f : NN -onto-> A -> ( x e. B -> ( E. k e. NN n = ( f ` k ) -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) | 
						
							| 33 | 32 | com23 |  |-  ( f : NN -onto-> A -> ( E. k e. NN n = ( f ` k ) -> ( x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) | 
						
							| 34 | 23 33 | syld |  |-  ( f : NN -onto-> A -> ( n e. A -> ( x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) | 
						
							| 35 | 17 21 34 | rexlimd |  |-  ( f : NN -onto-> A -> ( E. n e. A x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 36 | 16 35 | biimtrid |  |-  ( f : NN -onto-> A -> ( x e. U_ n e. A B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 37 | 36 | ssrdv |  |-  ( f : NN -onto-> A -> U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B ) | 
						
							| 39 |  | fof |  |-  ( f : NN -onto-> A -> f : NN --> A ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> f : NN --> A ) | 
						
							| 41 | 40 | ffvelcdmda |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( f ` k ) e. A ) | 
						
							| 42 |  | simpllr |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) | 
						
							| 43 |  | nfcv |  |-  F/_ n RR | 
						
							| 44 | 19 43 | nfss |  |-  F/ n [_ ( f ` k ) / n ]_ B C_ RR | 
						
							| 45 |  | nfcv |  |-  F/_ n vol* | 
						
							| 46 | 45 19 | nffv |  |-  F/_ n ( vol* ` [_ ( f ` k ) / n ]_ B ) | 
						
							| 47 | 46 | nfeq1 |  |-  F/ n ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 | 
						
							| 48 | 44 47 | nfan |  |-  F/ n ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) | 
						
							| 49 | 24 | sseq1d |  |-  ( n = ( f ` k ) -> ( B C_ RR <-> [_ ( f ` k ) / n ]_ B C_ RR ) ) | 
						
							| 50 | 24 | fveqeq2d |  |-  ( n = ( f ` k ) -> ( ( vol* ` B ) = 0 <-> ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) | 
						
							| 51 | 49 50 | anbi12d |  |-  ( n = ( f ` k ) -> ( ( B C_ RR /\ ( vol* ` B ) = 0 ) <-> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) ) | 
						
							| 52 | 48 51 | rspc |  |-  ( ( f ` k ) e. A -> ( A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) -> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) ) | 
						
							| 53 | 41 42 52 | sylc |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) | 
						
							| 54 | 53 | simpld |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> [_ ( f ` k ) / n ]_ B C_ RR ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> A. k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) | 
						
							| 56 |  | iunss |  |-  ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR <-> A. k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) | 
						
							| 57 | 55 56 | sylibr |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) | 
						
							| 58 |  | eqid |  |-  seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) | 
						
							| 59 |  | eqid |  |-  ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 60 | 53 | simprd |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) | 
						
							| 61 |  | 0re |  |-  0 e. RR | 
						
							| 62 | 60 61 | eqeltrdi |  |-  ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( vol* ` [_ ( f ` k ) / n ]_ B ) e. RR ) | 
						
							| 63 | 60 | mpteq2dva |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( k e. NN |-> 0 ) ) | 
						
							| 64 |  | fconstmpt |  |-  ( NN X. { 0 } ) = ( k e. NN |-> 0 ) | 
						
							| 65 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 66 | 65 | xpeq1i |  |-  ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) | 
						
							| 67 | 64 66 | eqtr3i |  |-  ( k e. NN |-> 0 ) = ( ( ZZ>= ` 1 ) X. { 0 } ) | 
						
							| 68 | 63 67 | eqtrdi |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( ( ZZ>= ` 1 ) X. { 0 } ) ) | 
						
							| 69 | 68 | seqeq3d |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) = seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) | 
						
							| 70 |  | 1z |  |-  1 e. ZZ | 
						
							| 71 |  | serclim0 |  |-  ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 72 |  | seqex |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. _V | 
						
							| 73 |  | c0ex |  |-  0 e. _V | 
						
							| 74 | 72 73 | breldm |  |-  ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. dom ~~> ) | 
						
							| 75 | 70 71 74 | mp2b |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. dom ~~> | 
						
							| 76 | 69 75 | eqeltrdi |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) e. dom ~~> ) | 
						
							| 77 | 58 59 54 62 76 | ovoliun2 |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 78 | 60 | sumeq2dv |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) = sum_ k e. NN 0 ) | 
						
							| 79 | 65 | eqimssi |  |-  NN C_ ( ZZ>= ` 1 ) | 
						
							| 80 | 79 | orci |  |-  ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) | 
						
							| 81 |  | sumz |  |-  ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ k e. NN 0 = 0 ) | 
						
							| 82 | 80 81 | ax-mp |  |-  sum_ k e. NN 0 = 0 | 
						
							| 83 | 78 82 | eqtrdi |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) | 
						
							| 84 | 77 83 | breqtrd |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 ) | 
						
							| 85 |  | ovolge0 |  |-  ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR -> 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 86 | 57 85 | syl |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) | 
						
							| 87 |  | ovolcl |  |-  ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* ) | 
						
							| 88 | 57 87 | syl |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* ) | 
						
							| 89 |  | 0xr |  |-  0 e. RR* | 
						
							| 90 |  | xrletri3 |  |-  ( ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 <-> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 /\ 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) ) | 
						
							| 91 | 88 89 90 | sylancl |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 <-> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 /\ 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) ) | 
						
							| 92 | 84 86 91 | mpbir2and |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 ) | 
						
							| 93 |  | ovolssnul |  |-  ( ( U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B /\ U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 ) -> ( vol* ` U_ n e. A B ) = 0 ) | 
						
							| 94 | 38 57 92 93 | syl3anc |  |-  ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ n e. A B ) = 0 ) | 
						
							| 95 | 94 | ex |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( f : NN -onto-> A -> ( vol* ` U_ n e. A B ) = 0 ) ) | 
						
							| 96 | 95 | exlimdv |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( E. f f : NN -onto-> A -> ( vol* ` U_ n e. A B ) = 0 ) ) | 
						
							| 97 | 15 96 | syld |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A -> ( vol* ` U_ n e. A B ) = 0 ) ) | 
						
							| 98 | 12 97 | sylbird |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( A =/= (/) -> ( vol* ` U_ n e. A B ) = 0 ) ) | 
						
							| 99 | 7 98 | pm2.61dne |  |-  ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( vol* ` U_ n e. A B ) = 0 ) |