Step |
Hyp |
Ref |
Expression |
1 |
|
ovollb.1 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
2 |
|
simpr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ U. ran ( (,) o. F ) ) |
3 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
4 |
|
simpl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
5 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
7 |
5 6
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
8 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
9 |
4 7 8
|
sylancl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( RR* X. RR* ) ) |
10 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
11 |
3 9 10
|
sylancr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
12 |
11
|
frnd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ran ( (,) o. F ) C_ ~P RR ) |
13 |
|
sspwuni |
|- ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) |
14 |
12 13
|
sylib |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> U. ran ( (,) o. F ) C_ RR ) |
15 |
2 14
|
sstrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ RR ) |
16 |
|
eqid |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
17 |
16
|
ovolval |
|- ( A C_ RR -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
18 |
15 17
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
19 |
|
ssrab2 |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR* |
20 |
16 1
|
elovolmr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
21 |
|
infxrlb |
|- ( ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR* /\ sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) ) |
22 |
19 20 21
|
sylancr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) ) |
23 |
18 22
|
eqbrtrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |