Metamath Proof Explorer


Theorem ovollb

Description: The outer volume is a lower bound on the sum of all interval coverings of A . (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypothesis ovollb.1
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) )
Assertion ovollb
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) )

Proof

Step Hyp Ref Expression
1 ovollb.1
 |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) )
2 simpr
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ U. ran ( (,) o. F ) )
3 ioof
 |-  (,) : ( RR* X. RR* ) --> ~P RR
4 simpl
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) )
5 inss2
 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR )
6 rexpssxrxp
 |-  ( RR X. RR ) C_ ( RR* X. RR* )
7 5 6 sstri
 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* )
8 fss
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) )
9 4 7 8 sylancl
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( RR* X. RR* ) )
10 fco
 |-  ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR )
11 3 9 10 sylancr
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( (,) o. F ) : NN --> ~P RR )
12 11 frnd
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ran ( (,) o. F ) C_ ~P RR )
13 sspwuni
 |-  ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR )
14 12 13 sylib
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> U. ran ( (,) o. F ) C_ RR )
15 2 14 sstrd
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ RR )
16 eqid
 |-  { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) }
17 16 ovolval
 |-  ( A C_ RR -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) )
18 15 17 syl
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) )
19 ssrab2
 |-  { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR*
20 16 1 elovolmr
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } )
21 infxrlb
 |-  ( ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR* /\ sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) )
22 19 20 21 sylancr
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) )
23 18 22 eqbrtrd
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) )