Step |
Hyp |
Ref |
Expression |
1 |
|
ovollb2.1 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
2 |
|
simpr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ U. ran ( [,] o. F ) ) |
3 |
|
ovolficcss |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
4 |
3
|
adantr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> U. ran ( [,] o. F ) C_ RR ) |
5 |
2 4
|
sstrd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ RR ) |
6 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
7 |
5 6
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) e. RR* ) |
8 |
7
|
adantr |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) e. RR* ) |
9 |
|
pnfge |
|- ( ( vol* ` A ) e. RR* -> ( vol* ` A ) <_ +oo ) |
10 |
8 9
|
syl |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ +oo ) |
11 |
|
simpr |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> sup ( ran S , RR* , < ) = +oo ) |
12 |
10 11
|
breqtrrd |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
13 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
14 |
13 1
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
15 |
14
|
adantr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> S : NN --> ( 0 [,) +oo ) ) |
16 |
15
|
frnd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ ( 0 [,) +oo ) ) |
17 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
18 |
16 17
|
sstrdi |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ RR ) |
19 |
|
1nn |
|- 1 e. NN |
20 |
15
|
fdmd |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S = NN ) |
21 |
19 20
|
eleqtrrid |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> 1 e. dom S ) |
22 |
21
|
ne0d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S =/= (/) ) |
23 |
|
dm0rn0 |
|- ( dom S = (/) <-> ran S = (/) ) |
24 |
23
|
necon3bii |
|- ( dom S =/= (/) <-> ran S =/= (/) ) |
25 |
22 24
|
sylib |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S =/= (/) ) |
26 |
|
supxrre2 |
|- ( ( ran S C_ RR /\ ran S =/= (/) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) |
27 |
18 25 26
|
syl2anc |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) |
28 |
27
|
biimpar |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> sup ( ran S , RR* , < ) e. RR ) |
29 |
|
2fveq3 |
|- ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) |
30 |
|
oveq2 |
|- ( m = n -> ( 2 ^ m ) = ( 2 ^ n ) ) |
31 |
30
|
oveq2d |
|- ( m = n -> ( ( x / 2 ) / ( 2 ^ m ) ) = ( ( x / 2 ) / ( 2 ^ n ) ) ) |
32 |
29 31
|
oveq12d |
|- ( m = n -> ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) ) |
33 |
|
2fveq3 |
|- ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) |
34 |
33 31
|
oveq12d |
|- ( m = n -> ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) ) |
35 |
32 34
|
opeq12d |
|- ( m = n -> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. = <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) |
36 |
35
|
cbvmptv |
|- ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) |
37 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) |
38 |
|
simplll |
|- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
39 |
|
simpllr |
|- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> A C_ U. ran ( [,] o. F ) ) |
40 |
|
simpr |
|- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> x e. RR+ ) |
41 |
|
simplr |
|- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> sup ( ran S , RR* , < ) e. RR ) |
42 |
1 36 37 38 39 40 41
|
ovollb2lem |
|- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) |
43 |
42
|
ralrimiva |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) |
44 |
|
xralrple |
|- ( ( ( vol* ` A ) e. RR* /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) |
45 |
7 44
|
sylan |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) |
46 |
43 45
|
mpbird |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
47 |
28 46
|
syldan |
|- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
48 |
12 47
|
pm2.61dane |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |