| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovollb2.1 |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 2 |  | simpr |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ U. ran ( [,] o. F ) ) | 
						
							| 3 |  | ovolficcss |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> U. ran ( [,] o. F ) C_ RR ) | 
						
							| 5 | 2 4 | sstrd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ RR ) | 
						
							| 6 |  | ovolcl |  |-  ( A C_ RR -> ( vol* ` A ) e. RR* ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) e. RR* ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) e. RR* ) | 
						
							| 9 |  | pnfge |  |-  ( ( vol* ` A ) e. RR* -> ( vol* ` A ) <_ +oo ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ +oo ) | 
						
							| 11 |  | simpr |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> sup ( ran S , RR* , < ) = +oo ) | 
						
							| 12 | 10 11 | breqtrrd |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 13 |  | eqid |  |-  ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) | 
						
							| 14 | 13 1 | ovolsf |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 16 | 15 | frnd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ ( 0 [,) +oo ) ) | 
						
							| 17 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 18 | 16 17 | sstrdi |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ RR ) | 
						
							| 19 |  | 1nn |  |-  1 e. NN | 
						
							| 20 | 15 | fdmd |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S = NN ) | 
						
							| 21 | 19 20 | eleqtrrid |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> 1 e. dom S ) | 
						
							| 22 | 21 | ne0d |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S =/= (/) ) | 
						
							| 23 |  | dm0rn0 |  |-  ( dom S = (/) <-> ran S = (/) ) | 
						
							| 24 | 23 | necon3bii |  |-  ( dom S =/= (/) <-> ran S =/= (/) ) | 
						
							| 25 | 22 24 | sylib |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S =/= (/) ) | 
						
							| 26 |  | supxrre2 |  |-  ( ( ran S C_ RR /\ ran S =/= (/) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) | 
						
							| 27 | 18 25 26 | syl2anc |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) | 
						
							| 28 | 27 | biimpar |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> sup ( ran S , RR* , < ) e. RR ) | 
						
							| 29 |  | 2fveq3 |  |-  ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( m = n -> ( 2 ^ m ) = ( 2 ^ n ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( m = n -> ( ( x / 2 ) / ( 2 ^ m ) ) = ( ( x / 2 ) / ( 2 ^ n ) ) ) | 
						
							| 32 | 29 31 | oveq12d |  |-  ( m = n -> ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) ) | 
						
							| 33 |  | 2fveq3 |  |-  ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) | 
						
							| 34 | 33 31 | oveq12d |  |-  ( m = n -> ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) ) | 
						
							| 35 | 32 34 | opeq12d |  |-  ( m = n -> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. = <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) | 
						
							| 36 | 35 | cbvmptv |  |-  ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) | 
						
							| 37 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) | 
						
							| 38 |  | simplll |  |-  ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 39 |  | simpllr |  |-  ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> A C_ U. ran ( [,] o. F ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 41 |  | simplr |  |-  ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> sup ( ran S , RR* , < ) e. RR ) | 
						
							| 42 | 1 36 37 38 39 40 41 | ovollb2lem |  |-  ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) | 
						
							| 43 | 42 | ralrimiva |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) | 
						
							| 44 |  | xralrple |  |-  ( ( ( vol* ` A ) e. RR* /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) | 
						
							| 45 | 7 44 | sylan |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) | 
						
							| 46 | 43 45 | mpbird |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 47 | 28 46 | syldan |  |-  ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 48 | 12 47 | pm2.61dane |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |