| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) e. RR* ) |
| 3 |
|
simp2 |
|- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> B e. RR ) |
| 4 |
|
ovolge0 |
|- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> 0 <_ ( vol* ` A ) ) |
| 6 |
|
simp3 |
|- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) <_ B ) |
| 7 |
|
xrrege0 |
|- ( ( ( ( vol* ` A ) e. RR* /\ B e. RR ) /\ ( 0 <_ ( vol* ` A ) /\ ( vol* ` A ) <_ B ) ) -> ( vol* ` A ) e. RR ) |
| 8 |
2 3 5 6 7
|
syl22anc |
|- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) e. RR ) |