| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid |  |-  RR C_ RR | 
						
							| 2 |  | ovolcl |  |-  ( RR C_ RR -> ( vol* ` RR ) e. RR* ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( vol* ` RR ) e. RR* | 
						
							| 4 |  | pnfge |  |-  ( ( vol* ` RR ) e. RR* -> ( vol* ` RR ) <_ +oo ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( vol* ` RR ) <_ +oo | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 |  | ovolicopnf |  |-  ( 0 e. RR -> ( vol* ` ( 0 [,) +oo ) ) = +oo ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( vol* ` ( 0 [,) +oo ) ) = +oo | 
						
							| 9 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 10 |  | ovolss |  |-  ( ( ( 0 [,) +oo ) C_ RR /\ RR C_ RR ) -> ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) ) | 
						
							| 11 | 9 1 10 | mp2an |  |-  ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) | 
						
							| 12 | 8 11 | eqbrtrri |  |-  +oo <_ ( vol* ` RR ) | 
						
							| 13 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 14 |  | xrletri3 |  |-  ( ( ( vol* ` RR ) e. RR* /\ +oo e. RR* ) -> ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) ) | 
						
							| 15 | 3 13 14 | mp2an |  |-  ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) | 
						
							| 16 | 5 12 15 | mpbir2an |  |-  ( vol* ` RR ) = +oo |