Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- RR C_ RR |
2 |
|
ovolcl |
|- ( RR C_ RR -> ( vol* ` RR ) e. RR* ) |
3 |
1 2
|
ax-mp |
|- ( vol* ` RR ) e. RR* |
4 |
|
pnfge |
|- ( ( vol* ` RR ) e. RR* -> ( vol* ` RR ) <_ +oo ) |
5 |
3 4
|
ax-mp |
|- ( vol* ` RR ) <_ +oo |
6 |
|
0re |
|- 0 e. RR |
7 |
|
ovolicopnf |
|- ( 0 e. RR -> ( vol* ` ( 0 [,) +oo ) ) = +oo ) |
8 |
6 7
|
ax-mp |
|- ( vol* ` ( 0 [,) +oo ) ) = +oo |
9 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
10 |
|
ovolss |
|- ( ( ( 0 [,) +oo ) C_ RR /\ RR C_ RR ) -> ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) ) |
11 |
9 1 10
|
mp2an |
|- ( vol* ` ( 0 [,) +oo ) ) <_ ( vol* ` RR ) |
12 |
8 11
|
eqbrtrri |
|- +oo <_ ( vol* ` RR ) |
13 |
|
pnfxr |
|- +oo e. RR* |
14 |
|
xrletri3 |
|- ( ( ( vol* ` RR ) e. RR* /\ +oo e. RR* ) -> ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) ) |
15 |
3 13 14
|
mp2an |
|- ( ( vol* ` RR ) = +oo <-> ( ( vol* ` RR ) <_ +oo /\ +oo <_ ( vol* ` RR ) ) ) |
16 |
5 12 15
|
mpbir2an |
|- ( vol* ` RR ) = +oo |