Metamath Proof Explorer


Theorem ovolsca

Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses ovolsca.1
|- ( ph -> A C_ RR )
ovolsca.2
|- ( ph -> C e. RR+ )
ovolsca.3
|- ( ph -> B = { x e. RR | ( C x. x ) e. A } )
ovolsca.4
|- ( ph -> ( vol* ` A ) e. RR )
Assertion ovolsca
|- ( ph -> ( vol* ` B ) = ( ( vol* ` A ) / C ) )

Proof

Step Hyp Ref Expression
1 ovolsca.1
 |-  ( ph -> A C_ RR )
2 ovolsca.2
 |-  ( ph -> C e. RR+ )
3 ovolsca.3
 |-  ( ph -> B = { x e. RR | ( C x. x ) e. A } )
4 ovolsca.4
 |-  ( ph -> ( vol* ` A ) e. RR )
5 1 2 3 4 ovolscalem2
 |-  ( ph -> ( vol* ` B ) <_ ( ( vol* ` A ) / C ) )
6 4 recnd
 |-  ( ph -> ( vol* ` A ) e. CC )
7 2 rpcnd
 |-  ( ph -> C e. CC )
8 2 rpne0d
 |-  ( ph -> C =/= 0 )
9 6 7 8 divrecd
 |-  ( ph -> ( ( vol* ` A ) / C ) = ( ( vol* ` A ) x. ( 1 / C ) ) )
10 ssrab2
 |-  { x e. RR | ( C x. x ) e. A } C_ RR
11 3 10 eqsstrdi
 |-  ( ph -> B C_ RR )
12 2 rpreccld
 |-  ( ph -> ( 1 / C ) e. RR+ )
13 1 2 3 sca2rab
 |-  ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } )
14 4 2 rerpdivcld
 |-  ( ph -> ( ( vol* ` A ) / C ) e. RR )
15 ovollecl
 |-  ( ( B C_ RR /\ ( ( vol* ` A ) / C ) e. RR /\ ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) -> ( vol* ` B ) e. RR )
16 11 14 5 15 syl3anc
 |-  ( ph -> ( vol* ` B ) e. RR )
17 11 12 13 16 ovolscalem2
 |-  ( ph -> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) )
18 4 16 12 lemuldivd
 |-  ( ph -> ( ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) <-> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) ) )
19 17 18 mpbird
 |-  ( ph -> ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) )
20 9 19 eqbrtrd
 |-  ( ph -> ( ( vol* ` A ) / C ) <_ ( vol* ` B ) )
21 16 14 letri3d
 |-  ( ph -> ( ( vol* ` B ) = ( ( vol* ` A ) / C ) <-> ( ( vol* ` B ) <_ ( ( vol* ` A ) / C ) /\ ( ( vol* ` A ) / C ) <_ ( vol* ` B ) ) ) )
22 5 20 21 mpbir2and
 |-  ( ph -> ( vol* ` B ) = ( ( vol* ` A ) / C ) )