| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolsca.1 |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | ovolsca.2 |  |-  ( ph -> C e. RR+ ) | 
						
							| 3 |  | ovolsca.3 |  |-  ( ph -> B = { x e. RR | ( C x. x ) e. A } ) | 
						
							| 4 |  | ovolsca.4 |  |-  ( ph -> ( vol* ` A ) e. RR ) | 
						
							| 5 | 1 2 3 4 | ovolscalem2 |  |-  ( ph -> ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) | 
						
							| 6 | 4 | recnd |  |-  ( ph -> ( vol* ` A ) e. CC ) | 
						
							| 7 | 2 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 8 | 2 | rpne0d |  |-  ( ph -> C =/= 0 ) | 
						
							| 9 | 6 7 8 | divrecd |  |-  ( ph -> ( ( vol* ` A ) / C ) = ( ( vol* ` A ) x. ( 1 / C ) ) ) | 
						
							| 10 |  | ssrab2 |  |-  { x e. RR | ( C x. x ) e. A } C_ RR | 
						
							| 11 | 3 10 | eqsstrdi |  |-  ( ph -> B C_ RR ) | 
						
							| 12 | 2 | rpreccld |  |-  ( ph -> ( 1 / C ) e. RR+ ) | 
						
							| 13 | 1 2 3 | sca2rab |  |-  ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } ) | 
						
							| 14 | 4 2 | rerpdivcld |  |-  ( ph -> ( ( vol* ` A ) / C ) e. RR ) | 
						
							| 15 |  | ovollecl |  |-  ( ( B C_ RR /\ ( ( vol* ` A ) / C ) e. RR /\ ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) -> ( vol* ` B ) e. RR ) | 
						
							| 16 | 11 14 5 15 | syl3anc |  |-  ( ph -> ( vol* ` B ) e. RR ) | 
						
							| 17 | 11 12 13 16 | ovolscalem2 |  |-  ( ph -> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) ) | 
						
							| 18 | 4 16 12 | lemuldivd |  |-  ( ph -> ( ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) <-> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) ) ) | 
						
							| 19 | 17 18 | mpbird |  |-  ( ph -> ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) ) | 
						
							| 20 | 9 19 | eqbrtrd |  |-  ( ph -> ( ( vol* ` A ) / C ) <_ ( vol* ` B ) ) | 
						
							| 21 | 16 14 | letri3d |  |-  ( ph -> ( ( vol* ` B ) = ( ( vol* ` A ) / C ) <-> ( ( vol* ` B ) <_ ( ( vol* ` A ) / C ) /\ ( ( vol* ` A ) / C ) <_ ( vol* ` B ) ) ) ) | 
						
							| 22 | 5 20 21 | mpbir2and |  |-  ( ph -> ( vol* ` B ) = ( ( vol* ` A ) / C ) ) |