| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolsca.1 |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | ovolsca.2 |  |-  ( ph -> C e. RR+ ) | 
						
							| 3 |  | ovolsca.3 |  |-  ( ph -> B = { x e. RR | ( C x. x ) e. A } ) | 
						
							| 4 |  | ovolsca.4 |  |-  ( ph -> ( vol* ` A ) e. RR ) | 
						
							| 5 |  | ovolsca.5 |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 6 |  | ovolsca.6 |  |-  G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) | 
						
							| 7 |  | ovolsca.7 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 8 |  | ovolsca.8 |  |-  ( ph -> A C_ U. ran ( (,) o. F ) ) | 
						
							| 9 |  | ovolsca.9 |  |-  ( ph -> R e. RR+ ) | 
						
							| 10 |  | ovolsca.10 |  |-  ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 11 |  | ssrab2 |  |-  { x e. RR | ( C x. x ) e. A } C_ RR | 
						
							| 12 | 3 11 | eqsstrdi |  |-  ( ph -> B C_ RR ) | 
						
							| 13 |  | ovolcl |  |-  ( B C_ RR -> ( vol* ` B ) e. RR* ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( vol* ` B ) e. RR* ) | 
						
							| 15 |  | ovolfcl |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 16 | 7 15 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 17 | 16 | simp3d |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) | 
						
							| 18 | 16 | simp1d |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) | 
						
							| 19 | 16 | simp2d |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) | 
						
							| 20 | 2 | rpregt0d |  |-  ( ph -> ( C e. RR /\ 0 < C ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) | 
						
							| 22 |  | lediv1 |  |-  ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) | 
						
							| 23 | 18 19 21 22 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) | 
						
							| 24 | 17 23 | mpbid |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) | 
						
							| 25 |  | df-br |  |-  ( ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) <-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) | 
						
							| 27 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> C e. RR+ ) | 
						
							| 28 | 18 27 | rerpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) e. RR ) | 
						
							| 29 | 19 27 | rerpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) / C ) e. RR ) | 
						
							| 30 | 28 29 | opelxpd |  |-  ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( RR X. RR ) ) | 
						
							| 31 | 26 30 | elind |  |-  ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 32 | 31 6 | fmptd |  |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 33 |  | eqid |  |-  ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) | 
						
							| 34 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) | 
						
							| 35 | 33 34 | ovolsf |  |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 36 | 32 35 | syl |  |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 37 | 36 | frnd |  |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) | 
						
							| 38 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 39 | 37 38 | sstrdi |  |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) | 
						
							| 40 |  | supxrcl |  |-  ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) | 
						
							| 42 | 4 2 | rerpdivcld |  |-  ( ph -> ( ( vol* ` A ) / C ) e. RR ) | 
						
							| 43 | 9 | rpred |  |-  ( ph -> R e. RR ) | 
						
							| 44 | 42 43 | readdcld |  |-  ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) | 
						
							| 45 | 44 | rexrd |  |-  ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR* ) | 
						
							| 46 | 3 | eleq2d |  |-  ( ph -> ( y e. B <-> y e. { x e. RR | ( C x. x ) e. A } ) ) | 
						
							| 47 |  | oveq2 |  |-  ( x = y -> ( C x. x ) = ( C x. y ) ) | 
						
							| 48 | 47 | eleq1d |  |-  ( x = y -> ( ( C x. x ) e. A <-> ( C x. y ) e. A ) ) | 
						
							| 49 | 48 | elrab |  |-  ( y e. { x e. RR | ( C x. x ) e. A } <-> ( y e. RR /\ ( C x. y ) e. A ) ) | 
						
							| 50 | 46 49 | bitrdi |  |-  ( ph -> ( y e. B <-> ( y e. RR /\ ( C x. y ) e. A ) ) ) | 
						
							| 51 |  | breq2 |  |-  ( x = ( C x. y ) -> ( ( 1st ` ( F ` n ) ) < x <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) | 
						
							| 52 |  | breq1 |  |-  ( x = ( C x. y ) -> ( x < ( 2nd ` ( F ` n ) ) <-> ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 53 | 51 52 | anbi12d |  |-  ( x = ( C x. y ) -> ( ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 54 | 53 | rexbidv |  |-  ( x = ( C x. y ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 55 |  | ovolfioo |  |-  ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 56 | 1 7 55 | syl2anc |  |-  ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 57 | 8 56 | mpbid |  |-  ( ph -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 59 |  | simprr |  |-  ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( C x. y ) e. A ) | 
						
							| 60 | 54 58 59 | rspcdva |  |-  ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 61 |  | opex |  |-  <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V | 
						
							| 62 | 6 | fvmpt2 |  |-  ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) | 
						
							| 63 | 61 62 | mpan2 |  |-  ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) | 
						
							| 64 | 63 | fveq2d |  |-  ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) | 
						
							| 65 |  | ovex |  |-  ( ( 1st ` ( F ` n ) ) / C ) e. _V | 
						
							| 66 |  | ovex |  |-  ( ( 2nd ` ( F ` n ) ) / C ) e. _V | 
						
							| 67 | 65 66 | op1st |  |-  ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 1st ` ( F ` n ) ) / C ) | 
						
							| 68 | 64 67 | eqtrdi |  |-  ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) | 
						
							| 70 | 69 | breq1d |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < y <-> ( ( 1st ` ( F ` n ) ) / C ) < y ) ) | 
						
							| 71 | 18 | adantlr |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) | 
						
							| 72 |  | simplrl |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> y e. RR ) | 
						
							| 73 | 21 | adantlr |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) | 
						
							| 74 |  | ltdivmul |  |-  ( ( ( 1st ` ( F ` n ) ) e. RR /\ y e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) | 
						
							| 75 | 71 72 73 74 | syl3anc |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) | 
						
							| 76 | 70 75 | bitr2d |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) < ( C x. y ) <-> ( 1st ` ( G ` n ) ) < y ) ) | 
						
							| 77 | 19 | adantlr |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) | 
						
							| 78 |  | ltmuldiv2 |  |-  ( ( y e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) | 
						
							| 79 | 72 77 73 78 | syl3anc |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) | 
						
							| 80 | 63 | fveq2d |  |-  ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) | 
						
							| 81 | 65 66 | op2nd |  |-  ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 2nd ` ( F ` n ) ) / C ) | 
						
							| 82 | 80 81 | eqtrdi |  |-  ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) | 
						
							| 84 | 83 | breq2d |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( y < ( 2nd ` ( G ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) | 
						
							| 85 | 79 84 | bitr4d |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 86 | 76 85 | anbi12d |  |-  ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 87 | 86 | rexbidva |  |-  ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 88 | 60 87 | mpbid |  |-  ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 89 | 88 | ex |  |-  ( ph -> ( ( y e. RR /\ ( C x. y ) e. A ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 90 | 50 89 | sylbid |  |-  ( ph -> ( y e. B -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 91 | 90 | ralrimiv |  |-  ( ph -> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 92 |  | ovolfioo |  |-  ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 93 | 12 32 92 | syl2anc |  |-  ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 94 | 91 93 | mpbird |  |-  ( ph -> B C_ U. ran ( (,) o. G ) ) | 
						
							| 95 | 34 | ovollb |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ B C_ U. ran ( (,) o. G ) ) -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) | 
						
							| 96 | 32 94 95 | syl2anc |  |-  ( ph -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) | 
						
							| 97 |  | fzfid |  |-  ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) | 
						
							| 98 | 2 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 99 | 98 | adantr |  |-  ( ( ph /\ k e. NN ) -> C e. CC ) | 
						
							| 100 |  | simpl |  |-  ( ( ph /\ k e. NN ) -> ph ) | 
						
							| 101 |  | elfznn |  |-  ( n e. ( 1 ... k ) -> n e. NN ) | 
						
							| 102 | 19 18 | resubcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) | 
						
							| 103 | 100 101 102 | syl2an |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) | 
						
							| 104 | 103 | recnd |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. CC ) | 
						
							| 105 | 2 | rpne0d |  |-  ( ph -> C =/= 0 ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ k e. NN ) -> C =/= 0 ) | 
						
							| 107 | 97 99 104 106 | fsumdivc |  |-  ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) | 
						
							| 108 | 82 68 | oveq12d |  |-  ( n e. NN -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) | 
						
							| 109 | 108 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) | 
						
							| 110 | 33 | ovolfsval |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) | 
						
							| 111 | 32 110 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) | 
						
							| 112 | 19 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. CC ) | 
						
							| 113 | 18 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. CC ) | 
						
							| 114 | 2 | rpcnne0d |  |-  ( ph -> ( C e. CC /\ C =/= 0 ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( C e. CC /\ C =/= 0 ) ) | 
						
							| 116 |  | divsubdir |  |-  ( ( ( 2nd ` ( F ` n ) ) e. CC /\ ( 1st ` ( F ` n ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) | 
						
							| 117 | 112 113 115 116 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) | 
						
							| 118 | 109 111 117 | 3eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) | 
						
							| 119 | 100 101 118 | syl2an |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) | 
						
							| 120 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 121 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 122 | 120 121 | eleqtrdi |  |-  ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 123 | 102 27 | rerpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. RR ) | 
						
							| 124 | 123 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) | 
						
							| 125 | 100 101 124 | syl2an |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) | 
						
							| 126 | 119 122 125 | fsumser |  |-  ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) | 
						
							| 127 | 107 126 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) | 
						
							| 128 |  | eqid |  |-  ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) | 
						
							| 129 | 128 5 | ovolsf |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 130 | 7 129 | syl |  |-  ( ph -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 131 | 130 | frnd |  |-  ( ph -> ran S C_ ( 0 [,) +oo ) ) | 
						
							| 132 | 131 38 | sstrdi |  |-  ( ph -> ran S C_ RR* ) | 
						
							| 133 | 2 9 | rpmulcld |  |-  ( ph -> ( C x. R ) e. RR+ ) | 
						
							| 134 | 133 | rpred |  |-  ( ph -> ( C x. R ) e. RR ) | 
						
							| 135 | 4 134 | readdcld |  |-  ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR ) | 
						
							| 136 | 135 | rexrd |  |-  ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) | 
						
							| 137 |  | supxrleub |  |-  ( ( ran S C_ RR* /\ ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) | 
						
							| 138 | 132 136 137 | syl2anc |  |-  ( ph -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) | 
						
							| 139 | 10 138 | mpbid |  |-  ( ph -> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 140 | 130 | ffnd |  |-  ( ph -> S Fn NN ) | 
						
							| 141 |  | breq1 |  |-  ( x = ( S ` k ) -> ( x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) | 
						
							| 142 | 141 | ralrn |  |-  ( S Fn NN -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) | 
						
							| 143 | 140 142 | syl |  |-  ( ph -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) | 
						
							| 144 | 139 143 | mpbid |  |-  ( ph -> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 145 | 144 | r19.21bi |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 146 | 7 | adantr |  |-  ( ( ph /\ k e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 147 | 128 | ovolfsval |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) | 
						
							| 148 | 146 101 147 | syl2an |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) | 
						
							| 149 | 148 122 104 | fsumser |  |-  ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) ) | 
						
							| 150 | 5 | fveq1i |  |-  ( S ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) | 
						
							| 151 | 149 150 | eqtr4di |  |-  ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( S ` k ) ) | 
						
							| 152 | 42 | recnd |  |-  ( ph -> ( ( vol* ` A ) / C ) e. CC ) | 
						
							| 153 | 9 | rpcnd |  |-  ( ph -> R e. CC ) | 
						
							| 154 | 98 152 153 | adddid |  |-  ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) ) | 
						
							| 155 | 4 | recnd |  |-  ( ph -> ( vol* ` A ) e. CC ) | 
						
							| 156 | 155 98 105 | divcan2d |  |-  ( ph -> ( C x. ( ( vol* ` A ) / C ) ) = ( vol* ` A ) ) | 
						
							| 157 | 156 | oveq1d |  |-  ( ph -> ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 158 | 154 157 | eqtrd |  |-  ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) | 
						
							| 160 | 145 151 159 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 161 | 97 103 | fsumrecl |  |-  ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) | 
						
							| 162 | 44 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) | 
						
							| 163 | 20 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( C e. RR /\ 0 < C ) ) | 
						
							| 164 |  | ledivmul |  |-  ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR /\ ( ( ( vol* ` A ) / C ) + R ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) | 
						
							| 165 | 161 162 163 164 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) | 
						
							| 166 | 160 165 | mpbird |  |-  ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) ) | 
						
							| 167 | 127 166 | eqbrtrrd |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) | 
						
							| 168 | 167 | ralrimiva |  |-  ( ph -> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) | 
						
							| 169 | 36 | ffnd |  |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) | 
						
							| 170 |  | breq1 |  |-  ( y = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) -> ( y <_ ( ( ( vol* ` A ) / C ) + R ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 171 | 170 | ralrn |  |-  ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 172 | 169 171 | syl |  |-  ( ph -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 173 | 168 172 | mpbird |  |-  ( ph -> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) | 
						
							| 174 |  | supxrleub |  |-  ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( ( ( vol* ` A ) / C ) + R ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 175 | 39 45 174 | syl2anc |  |-  ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) | 
						
							| 176 | 173 175 | mpbird |  |-  ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) ) | 
						
							| 177 | 14 41 45 96 176 | xrletrd |  |-  ( ph -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |