| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolshft.1 |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | ovolshft.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | ovolshft.3 |  |-  ( ph -> B = { x e. RR | ( x - C ) e. A } ) | 
						
							| 4 |  | ovolshft.4 |  |-  M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } | 
						
							| 5 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ RR ) | 
						
							| 6 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> C e. RR ) | 
						
							| 7 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> B = { x e. RR | ( x - C ) e. A } ) | 
						
							| 8 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. g ) ) = seq 1 ( + , ( ( abs o. - ) o. g ) ) | 
						
							| 9 |  | 2fveq3 |  |-  ( m = n -> ( 1st ` ( g ` m ) ) = ( 1st ` ( g ` n ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( m = n -> ( ( 1st ` ( g ` m ) ) + C ) = ( ( 1st ` ( g ` n ) ) + C ) ) | 
						
							| 11 |  | 2fveq3 |  |-  ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( m = n -> ( ( 2nd ` ( g ` m ) ) + C ) = ( ( 2nd ` ( g ` n ) ) + C ) ) | 
						
							| 13 | 10 12 | opeq12d |  |-  ( m = n -> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. = <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) | 
						
							| 14 | 13 | cbvmptv |  |-  ( m e. NN |-> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 16 |  | elovolmlem |  |-  ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> g : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ U. ran ( (,) o. g ) ) | 
						
							| 19 | 5 6 7 4 8 14 17 18 | ovolshftlem1 |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M ) | 
						
							| 20 |  | eleq1a |  |-  ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) | 
						
							| 22 | 21 | expimpd |  |-  ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) -> ( ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) | 
						
							| 23 | 22 | rexlimdva |  |-  ( ( ph /\ z e. RR* ) -> ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ph -> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) | 
						
							| 25 |  | rabss |  |-  ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M <-> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ph -> { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M ) |