Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolsn | |- ( A e. RR -> ( vol* ` { A } ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snfi |  |-  { A } e. Fin | |
| 2 | snssi |  |-  ( A e. RR -> { A } C_ RR ) | |
| 3 | ovolfi |  |-  ( ( { A } e. Fin /\ { A } C_ RR ) -> ( vol* ` { A } ) = 0 ) | |
| 4 | 1 2 3 | sylancr |  |-  ( A e. RR -> ( vol* ` { A } ) = 0 ) |