| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sstr |
|- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
| 2 |
1
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> A C_ RR ) |
| 3 |
|
simp3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` B ) e. RR ) |
| 4 |
|
ovolss |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 5 |
4
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 6 |
|
ovollecl |
|- ( ( A C_ RR /\ ( vol* ` B ) e. RR /\ ( vol* ` A ) <_ ( vol* ` B ) ) -> ( vol* ` A ) e. RR ) |
| 7 |
2 3 5 6
|
syl3anc |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` A ) e. RR ) |