Step |
Hyp |
Ref |
Expression |
1 |
|
ovolss.1 |
|- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
2 |
|
ovolss.2 |
|- N = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
3 |
|
sstr2 |
|- ( A C_ B -> ( B C_ U. ran ( (,) o. f ) -> A C_ U. ran ( (,) o. f ) ) ) |
4 |
3
|
ad2antrr |
|- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( B C_ U. ran ( (,) o. f ) -> A C_ U. ran ( (,) o. f ) ) ) |
5 |
4
|
anim1d |
|- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
6 |
5
|
reximdv |
|- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
7 |
6
|
ss2rabdv |
|- ( ( A C_ B /\ B C_ RR ) -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
8 |
7 2 1
|
3sstr4g |
|- ( ( A C_ B /\ B C_ RR ) -> N C_ M ) |
9 |
|
sstr |
|- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
10 |
1
|
ovolval |
|- ( A C_ RR -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
11 |
10
|
adantr |
|- ( ( A C_ RR /\ x e. M ) -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
12 |
1
|
ssrab3 |
|- M C_ RR* |
13 |
|
infxrlb |
|- ( ( M C_ RR* /\ x e. M ) -> inf ( M , RR* , < ) <_ x ) |
14 |
12 13
|
mpan |
|- ( x e. M -> inf ( M , RR* , < ) <_ x ) |
15 |
14
|
adantl |
|- ( ( A C_ RR /\ x e. M ) -> inf ( M , RR* , < ) <_ x ) |
16 |
11 15
|
eqbrtrd |
|- ( ( A C_ RR /\ x e. M ) -> ( vol* ` A ) <_ x ) |
17 |
16
|
ralrimiva |
|- ( A C_ RR -> A. x e. M ( vol* ` A ) <_ x ) |
18 |
9 17
|
syl |
|- ( ( A C_ B /\ B C_ RR ) -> A. x e. M ( vol* ` A ) <_ x ) |
19 |
|
ssralv |
|- ( N C_ M -> ( A. x e. M ( vol* ` A ) <_ x -> A. x e. N ( vol* ` A ) <_ x ) ) |
20 |
8 18 19
|
sylc |
|- ( ( A C_ B /\ B C_ RR ) -> A. x e. N ( vol* ` A ) <_ x ) |
21 |
2
|
ssrab3 |
|- N C_ RR* |
22 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
23 |
9 22
|
syl |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) e. RR* ) |
24 |
|
infxrgelb |
|- ( ( N C_ RR* /\ ( vol* ` A ) e. RR* ) -> ( ( vol* ` A ) <_ inf ( N , RR* , < ) <-> A. x e. N ( vol* ` A ) <_ x ) ) |
25 |
21 23 24
|
sylancr |
|- ( ( A C_ B /\ B C_ RR ) -> ( ( vol* ` A ) <_ inf ( N , RR* , < ) <-> A. x e. N ( vol* ` A ) <_ x ) ) |
26 |
20 25
|
mpbird |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ inf ( N , RR* , < ) ) |
27 |
2
|
ovolval |
|- ( B C_ RR -> ( vol* ` B ) = inf ( N , RR* , < ) ) |
28 |
27
|
adantl |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` B ) = inf ( N , RR* , < ) ) |
29 |
26 28
|
breqtrrd |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |