Step |
Hyp |
Ref |
Expression |
1 |
|
ovolss |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
2 |
1
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
3 |
|
simp3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` B ) = 0 ) |
4 |
2 3
|
breqtrd |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ 0 ) |
5 |
|
sstr |
|- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
6 |
5
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> A C_ RR ) |
7 |
|
ovolge0 |
|- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
8 |
6 7
|
syl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> 0 <_ ( vol* ` A ) ) |
9 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
10 |
6 9
|
syl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) e. RR* ) |
11 |
|
0xr |
|- 0 e. RR* |
12 |
|
xrletri3 |
|- ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
13 |
10 11 12
|
sylancl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
14 |
4 8 13
|
mpbir2and |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) = 0 ) |