| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolss |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 2 |
1
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 3 |
|
simp3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` B ) = 0 ) |
| 4 |
2 3
|
breqtrd |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ 0 ) |
| 5 |
|
sstr |
|- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
| 6 |
5
|
3adant3 |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> A C_ RR ) |
| 7 |
|
ovolge0 |
|- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
| 8 |
6 7
|
syl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> 0 <_ ( vol* ` A ) ) |
| 9 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
| 10 |
6 9
|
syl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) e. RR* ) |
| 11 |
|
0xr |
|- 0 e. RR* |
| 12 |
|
xrletri3 |
|- ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 13 |
10 11 12
|
sylancl |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 14 |
4 8 13
|
mpbir2and |
|- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) = 0 ) |