| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolun.a |
|- ( ph -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
| 2 |
|
ovolun.b |
|- ( ph -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
| 3 |
|
ovolun.c |
|- ( ph -> C e. RR+ ) |
| 4 |
|
ovolun.s |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
| 5 |
|
ovolun.t |
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
| 6 |
|
ovolun.u |
|- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
| 7 |
|
ovolun.f1 |
|- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 8 |
|
ovolun.f2 |
|- ( ph -> A C_ U. ran ( (,) o. F ) ) |
| 9 |
|
ovolun.f3 |
|- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
| 10 |
|
ovolun.g1 |
|- ( ph -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 11 |
|
ovolun.g2 |
|- ( ph -> B C_ U. ran ( (,) o. G ) ) |
| 12 |
|
ovolun.g3 |
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
| 13 |
|
ovolun.h |
|- H = ( n e. NN |-> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) ) |
| 14 |
1
|
simpld |
|- ( ph -> A C_ RR ) |
| 15 |
2
|
simpld |
|- ( ph -> B C_ RR ) |
| 16 |
14 15
|
unssd |
|- ( ph -> ( A u. B ) C_ RR ) |
| 17 |
|
elovolmlem |
|- ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 18 |
10 17
|
sylib |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 20 |
19
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ ( n / 2 ) e. NN ) -> ( G ` ( n / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 21 |
|
nneo |
|- ( n e. NN -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
| 23 |
22
|
con2bid |
|- ( ( ph /\ n e. NN ) -> ( ( ( n + 1 ) / 2 ) e. NN <-> -. ( n / 2 ) e. NN ) ) |
| 24 |
23
|
biimpar |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( ( n + 1 ) / 2 ) e. NN ) |
| 25 |
|
elovolmlem |
|- ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 26 |
7 25
|
sylib |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 28 |
27
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ ( ( n + 1 ) / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 29 |
24 28
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 30 |
20 29
|
ifclda |
|- ( ( ph /\ n e. NN ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 31 |
30 13
|
fmptd |
|- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 32 |
|
eqid |
|- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
| 33 |
32 6
|
ovolsf |
|- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) |
| 34 |
31 33
|
syl |
|- ( ph -> U : NN --> ( 0 [,) +oo ) ) |
| 35 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 36 |
|
fss |
|- ( ( U : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> U : NN --> RR ) |
| 37 |
34 35 36
|
sylancl |
|- ( ph -> U : NN --> RR ) |
| 38 |
37
|
frnd |
|- ( ph -> ran U C_ RR ) |
| 39 |
|
1nn |
|- 1 e. NN |
| 40 |
|
1z |
|- 1 e. ZZ |
| 41 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 42 |
40 41
|
mp1i |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 43 |
6
|
fneq1i |
|- ( U Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn NN ) |
| 44 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 45 |
44
|
fneq2i |
|- ( seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 46 |
43 45
|
bitri |
|- ( U Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 47 |
42 46
|
sylibr |
|- ( ph -> U Fn NN ) |
| 48 |
47
|
fndmd |
|- ( ph -> dom U = NN ) |
| 49 |
39 48
|
eleqtrrid |
|- ( ph -> 1 e. dom U ) |
| 50 |
49
|
ne0d |
|- ( ph -> dom U =/= (/) ) |
| 51 |
|
dm0rn0 |
|- ( dom U = (/) <-> ran U = (/) ) |
| 52 |
51
|
necon3bii |
|- ( dom U =/= (/) <-> ran U =/= (/) ) |
| 53 |
50 52
|
sylib |
|- ( ph -> ran U =/= (/) ) |
| 54 |
1
|
simprd |
|- ( ph -> ( vol* ` A ) e. RR ) |
| 55 |
2
|
simprd |
|- ( ph -> ( vol* ` B ) e. RR ) |
| 56 |
54 55
|
readdcld |
|- ( ph -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
| 57 |
3
|
rpred |
|- ( ph -> C e. RR ) |
| 58 |
56 57
|
readdcld |
|- ( ph -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR ) |
| 59 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
ovolunlem1a |
|- ( ( ph /\ k e. NN ) -> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 60 |
59
|
ralrimiva |
|- ( ph -> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 61 |
|
breq1 |
|- ( z = ( U ` k ) -> ( z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 62 |
61
|
ralrn |
|- ( U Fn NN -> ( A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 63 |
47 62
|
syl |
|- ( ph -> ( A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 64 |
60 63
|
mpbird |
|- ( ph -> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 65 |
|
brralrspcev |
|- ( ( ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR /\ A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) -> E. k e. RR A. z e. ran U z <_ k ) |
| 66 |
58 64 65
|
syl2anc |
|- ( ph -> E. k e. RR A. z e. ran U z <_ k ) |
| 67 |
|
ressxr |
|- RR C_ RR* |
| 68 |
38 67
|
sstrdi |
|- ( ph -> ran U C_ RR* ) |
| 69 |
|
supxrbnd2 |
|- ( ran U C_ RR* -> ( E. k e. RR A. z e. ran U z <_ k <-> sup ( ran U , RR* , < ) < +oo ) ) |
| 70 |
68 69
|
syl |
|- ( ph -> ( E. k e. RR A. z e. ran U z <_ k <-> sup ( ran U , RR* , < ) < +oo ) ) |
| 71 |
66 70
|
mpbid |
|- ( ph -> sup ( ran U , RR* , < ) < +oo ) |
| 72 |
|
supxrbnd |
|- ( ( ran U C_ RR /\ ran U =/= (/) /\ sup ( ran U , RR* , < ) < +oo ) -> sup ( ran U , RR* , < ) e. RR ) |
| 73 |
38 53 71 72
|
syl3anc |
|- ( ph -> sup ( ran U , RR* , < ) e. RR ) |
| 74 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 75 |
74
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 76 |
|
1cnd |
|- ( ( ph /\ m e. NN ) -> 1 e. CC ) |
| 77 |
75
|
2timesd |
|- ( ( ph /\ m e. NN ) -> ( 2 x. m ) = ( m + m ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) = ( ( m + m ) - 1 ) ) |
| 79 |
75 75 76 78
|
assraddsubd |
|- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) = ( m + ( m - 1 ) ) ) |
| 80 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
| 81 |
|
nnm1nn0 |
|- ( m e. NN -> ( m - 1 ) e. NN0 ) |
| 82 |
|
nnnn0addcl |
|- ( ( m e. NN /\ ( m - 1 ) e. NN0 ) -> ( m + ( m - 1 ) ) e. NN ) |
| 83 |
80 81 82
|
syl2anc2 |
|- ( ( ph /\ m e. NN ) -> ( m + ( m - 1 ) ) e. NN ) |
| 84 |
79 83
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) e. NN ) |
| 85 |
|
oveq1 |
|- ( n = ( ( 2 x. m ) - 1 ) -> ( n / 2 ) = ( ( ( 2 x. m ) - 1 ) / 2 ) ) |
| 86 |
85
|
eleq1d |
|- ( n = ( ( 2 x. m ) - 1 ) -> ( ( n / 2 ) e. NN <-> ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) ) |
| 87 |
85
|
fveq2d |
|- ( n = ( ( 2 x. m ) - 1 ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) ) |
| 88 |
|
oveq1 |
|- ( n = ( ( 2 x. m ) - 1 ) -> ( n + 1 ) = ( ( ( 2 x. m ) - 1 ) + 1 ) ) |
| 89 |
88
|
fvoveq1d |
|- ( n = ( ( 2 x. m ) - 1 ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) |
| 90 |
86 87 89
|
ifbieq12d |
|- ( n = ( ( 2 x. m ) - 1 ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 91 |
|
fvex |
|- ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) e. _V |
| 92 |
|
fvex |
|- ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) e. _V |
| 93 |
91 92
|
ifex |
|- if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) e. _V |
| 94 |
90 13 93
|
fvmpt |
|- ( ( ( 2 x. m ) - 1 ) e. NN -> ( H ` ( ( 2 x. m ) - 1 ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 95 |
84 94
|
syl |
|- ( ( ph /\ m e. NN ) -> ( H ` ( ( 2 x. m ) - 1 ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 96 |
|
2nn |
|- 2 e. NN |
| 97 |
|
nnmulcl |
|- ( ( 2 e. NN /\ m e. NN ) -> ( 2 x. m ) e. NN ) |
| 98 |
96 80 97
|
sylancr |
|- ( ( ph /\ m e. NN ) -> ( 2 x. m ) e. NN ) |
| 99 |
98
|
nncnd |
|- ( ( ph /\ m e. NN ) -> ( 2 x. m ) e. CC ) |
| 100 |
|
ax-1cn |
|- 1 e. CC |
| 101 |
|
npcan |
|- ( ( ( 2 x. m ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. m ) - 1 ) + 1 ) = ( 2 x. m ) ) |
| 102 |
99 100 101
|
sylancl |
|- ( ( ph /\ m e. NN ) -> ( ( ( 2 x. m ) - 1 ) + 1 ) = ( 2 x. m ) ) |
| 103 |
102
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) = ( ( 2 x. m ) / 2 ) ) |
| 104 |
|
2cn |
|- 2 e. CC |
| 105 |
|
2ne0 |
|- 2 =/= 0 |
| 106 |
|
divcan3 |
|- ( ( m e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. m ) / 2 ) = m ) |
| 107 |
104 105 106
|
mp3an23 |
|- ( m e. CC -> ( ( 2 x. m ) / 2 ) = m ) |
| 108 |
75 107
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) / 2 ) = m ) |
| 109 |
103 108
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) = m ) |
| 110 |
109 80
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) |
| 111 |
|
nneo |
|- ( ( ( 2 x. m ) - 1 ) e. NN -> ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN <-> -. ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) ) |
| 112 |
84 111
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN <-> -. ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) ) |
| 113 |
112
|
con2bid |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN <-> -. ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) ) |
| 114 |
110 113
|
mpbid |
|- ( ( ph /\ m e. NN ) -> -. ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) |
| 115 |
114
|
iffalsed |
|- ( ( ph /\ m e. NN ) -> if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) = ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) |
| 116 |
109
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) = ( F ` m ) ) |
| 117 |
95 115 116
|
3eqtrd |
|- ( ( ph /\ m e. NN ) -> ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) |
| 118 |
|
fveqeq2 |
|- ( k = ( ( 2 x. m ) - 1 ) -> ( ( H ` k ) = ( F ` m ) <-> ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) ) |
| 119 |
118
|
rspcev |
|- ( ( ( ( 2 x. m ) - 1 ) e. NN /\ ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) -> E. k e. NN ( H ` k ) = ( F ` m ) ) |
| 120 |
84 117 119
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> E. k e. NN ( H ` k ) = ( F ` m ) ) |
| 121 |
|
fveq2 |
|- ( ( H ` k ) = ( F ` m ) -> ( 1st ` ( H ` k ) ) = ( 1st ` ( F ` m ) ) ) |
| 122 |
121
|
breq1d |
|- ( ( H ` k ) = ( F ` m ) -> ( ( 1st ` ( H ` k ) ) < z <-> ( 1st ` ( F ` m ) ) < z ) ) |
| 123 |
|
fveq2 |
|- ( ( H ` k ) = ( F ` m ) -> ( 2nd ` ( H ` k ) ) = ( 2nd ` ( F ` m ) ) ) |
| 124 |
123
|
breq2d |
|- ( ( H ` k ) = ( F ` m ) -> ( z < ( 2nd ` ( H ` k ) ) <-> z < ( 2nd ` ( F ` m ) ) ) ) |
| 125 |
122 124
|
anbi12d |
|- ( ( H ` k ) = ( F ` m ) -> ( ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) <-> ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
| 126 |
125
|
biimprcd |
|- ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> ( ( H ` k ) = ( F ` m ) -> ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 127 |
126
|
reximdv |
|- ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> ( E. k e. NN ( H ` k ) = ( F ` m ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 128 |
120 127
|
syl5com |
|- ( ( ph /\ m e. NN ) -> ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ph -> ( E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 130 |
129
|
ralimdv |
|- ( ph -> ( A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 131 |
|
ovolfioo |
|- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
| 132 |
14 26 131
|
syl2anc |
|- ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
| 133 |
|
ovolfioo |
|- ( ( A C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. H ) <-> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 134 |
14 31 133
|
syl2anc |
|- ( ph -> ( A C_ U. ran ( (,) o. H ) <-> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 135 |
130 132 134
|
3imtr4d |
|- ( ph -> ( A C_ U. ran ( (,) o. F ) -> A C_ U. ran ( (,) o. H ) ) ) |
| 136 |
8 135
|
mpd |
|- ( ph -> A C_ U. ran ( (,) o. H ) ) |
| 137 |
|
oveq1 |
|- ( n = ( 2 x. m ) -> ( n / 2 ) = ( ( 2 x. m ) / 2 ) ) |
| 138 |
137
|
eleq1d |
|- ( n = ( 2 x. m ) -> ( ( n / 2 ) e. NN <-> ( ( 2 x. m ) / 2 ) e. NN ) ) |
| 139 |
137
|
fveq2d |
|- ( n = ( 2 x. m ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( 2 x. m ) / 2 ) ) ) |
| 140 |
|
oveq1 |
|- ( n = ( 2 x. m ) -> ( n + 1 ) = ( ( 2 x. m ) + 1 ) ) |
| 141 |
140
|
fvoveq1d |
|- ( n = ( 2 x. m ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) |
| 142 |
138 139 141
|
ifbieq12d |
|- ( n = ( 2 x. m ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 143 |
|
fvex |
|- ( G ` ( ( 2 x. m ) / 2 ) ) e. _V |
| 144 |
|
fvex |
|- ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) e. _V |
| 145 |
143 144
|
ifex |
|- if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) e. _V |
| 146 |
142 13 145
|
fvmpt |
|- ( ( 2 x. m ) e. NN -> ( H ` ( 2 x. m ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 147 |
98 146
|
syl |
|- ( ( ph /\ m e. NN ) -> ( H ` ( 2 x. m ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 148 |
108 80
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) / 2 ) e. NN ) |
| 149 |
148
|
iftrued |
|- ( ( ph /\ m e. NN ) -> if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) = ( G ` ( ( 2 x. m ) / 2 ) ) ) |
| 150 |
108
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( G ` ( ( 2 x. m ) / 2 ) ) = ( G ` m ) ) |
| 151 |
147 149 150
|
3eqtrd |
|- ( ( ph /\ m e. NN ) -> ( H ` ( 2 x. m ) ) = ( G ` m ) ) |
| 152 |
|
fveqeq2 |
|- ( k = ( 2 x. m ) -> ( ( H ` k ) = ( G ` m ) <-> ( H ` ( 2 x. m ) ) = ( G ` m ) ) ) |
| 153 |
152
|
rspcev |
|- ( ( ( 2 x. m ) e. NN /\ ( H ` ( 2 x. m ) ) = ( G ` m ) ) -> E. k e. NN ( H ` k ) = ( G ` m ) ) |
| 154 |
98 151 153
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> E. k e. NN ( H ` k ) = ( G ` m ) ) |
| 155 |
|
fveq2 |
|- ( ( H ` k ) = ( G ` m ) -> ( 1st ` ( H ` k ) ) = ( 1st ` ( G ` m ) ) ) |
| 156 |
155
|
breq1d |
|- ( ( H ` k ) = ( G ` m ) -> ( ( 1st ` ( H ` k ) ) < z <-> ( 1st ` ( G ` m ) ) < z ) ) |
| 157 |
|
fveq2 |
|- ( ( H ` k ) = ( G ` m ) -> ( 2nd ` ( H ` k ) ) = ( 2nd ` ( G ` m ) ) ) |
| 158 |
157
|
breq2d |
|- ( ( H ` k ) = ( G ` m ) -> ( z < ( 2nd ` ( H ` k ) ) <-> z < ( 2nd ` ( G ` m ) ) ) ) |
| 159 |
156 158
|
anbi12d |
|- ( ( H ` k ) = ( G ` m ) -> ( ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) <-> ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 160 |
159
|
biimprcd |
|- ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> ( ( H ` k ) = ( G ` m ) -> ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 161 |
160
|
reximdv |
|- ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> ( E. k e. NN ( H ` k ) = ( G ` m ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 162 |
154 161
|
syl5com |
|- ( ( ph /\ m e. NN ) -> ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 163 |
162
|
rexlimdva |
|- ( ph -> ( E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 164 |
163
|
ralimdv |
|- ( ph -> ( A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 165 |
|
ovolfioo |
|- ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 166 |
15 18 165
|
syl2anc |
|- ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 167 |
|
ovolfioo |
|- ( ( B C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. H ) <-> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 168 |
15 31 167
|
syl2anc |
|- ( ph -> ( B C_ U. ran ( (,) o. H ) <-> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 169 |
164 166 168
|
3imtr4d |
|- ( ph -> ( B C_ U. ran ( (,) o. G ) -> B C_ U. ran ( (,) o. H ) ) ) |
| 170 |
11 169
|
mpd |
|- ( ph -> B C_ U. ran ( (,) o. H ) ) |
| 171 |
136 170
|
unssd |
|- ( ph -> ( A u. B ) C_ U. ran ( (,) o. H ) ) |
| 172 |
6
|
ovollb |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A u. B ) C_ U. ran ( (,) o. H ) ) -> ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) |
| 173 |
31 171 172
|
syl2anc |
|- ( ph -> ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) |
| 174 |
|
ovollecl |
|- ( ( ( A u. B ) C_ RR /\ sup ( ran U , RR* , < ) e. RR /\ ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) -> ( vol* ` ( A u. B ) ) e. RR ) |
| 175 |
16 73 173 174
|
syl3anc |
|- ( ph -> ( vol* ` ( A u. B ) ) e. RR ) |
| 176 |
58
|
rexrd |
|- ( ph -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR* ) |
| 177 |
|
supxrleub |
|- ( ( ran U C_ RR* /\ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR* ) -> ( sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 178 |
68 176 177
|
syl2anc |
|- ( ph -> ( sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 179 |
64 178
|
mpbird |
|- ( ph -> sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 180 |
175 73 58 173 179
|
letrd |
|- ( ph -> ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |