Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> A C_ RR ) |
2 |
|
simp2 |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> B C_ RR ) |
3 |
1 2
|
unssd |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( A u. B ) C_ RR ) |
4 |
|
ovolcl |
|- ( ( A u. B ) C_ RR -> ( vol* ` ( A u. B ) ) e. RR* ) |
5 |
3 4
|
syl |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) e. RR* ) |
6 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
7 |
6
|
3ad2ant1 |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) e. RR* ) |
8 |
|
xrltnle |
|- ( ( ( vol* ` A ) e. RR* /\ ( vol* ` ( A u. B ) ) e. RR* ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) <-> -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
9 |
7 5 8
|
syl2anc |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) <-> -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
10 |
1
|
adantr |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> A C_ RR ) |
11 |
|
mnfxr |
|- -oo e. RR* |
12 |
11
|
a1i |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> -oo e. RR* ) |
13 |
10 6
|
syl |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. RR* ) |
14 |
5
|
adantr |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) e. RR* ) |
15 |
|
ovolge0 |
|- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> 0 <_ ( vol* ` A ) ) |
17 |
|
ge0gtmnf |
|- ( ( ( vol* ` A ) e. RR* /\ 0 <_ ( vol* ` A ) ) -> -oo < ( vol* ` A ) ) |
18 |
7 16 17
|
syl2anc |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> -oo < ( vol* ` A ) ) |
19 |
18
|
adantr |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> -oo < ( vol* ` A ) ) |
20 |
|
simpr |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) |
21 |
|
xrre2 |
|- ( ( ( -oo e. RR* /\ ( vol* ` A ) e. RR* /\ ( vol* ` ( A u. B ) ) e. RR* ) /\ ( -oo < ( vol* ` A ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) ) -> ( vol* ` A ) e. RR ) |
22 |
12 13 14 19 20 21
|
syl32anc |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. RR ) |
23 |
2
|
adantr |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> B C_ RR ) |
24 |
|
simpl3 |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` B ) = 0 ) |
25 |
|
0re |
|- 0 e. RR |
26 |
24 25
|
eqeltrdi |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` B ) e. RR ) |
27 |
|
ovolun |
|- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
28 |
10 22 23 26 27
|
syl22anc |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
29 |
24
|
oveq2d |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) = ( ( vol* ` A ) + 0 ) ) |
30 |
22
|
recnd |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. CC ) |
31 |
30
|
addid1d |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + 0 ) = ( vol* ` A ) ) |
32 |
29 31
|
eqtrd |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) = ( vol* ` A ) ) |
33 |
28 32
|
breqtrd |
|- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) |
34 |
33
|
ex |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
35 |
9 34
|
sylbird |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
36 |
35
|
pm2.18d |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) |
37 |
|
ssun1 |
|- A C_ ( A u. B ) |
38 |
|
ovolss |
|- ( ( A C_ ( A u. B ) /\ ( A u. B ) C_ RR ) -> ( vol* ` A ) <_ ( vol* ` ( A u. B ) ) ) |
39 |
37 3 38
|
sylancr |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ ( vol* ` ( A u. B ) ) ) |
40 |
5 7 36 39
|
xrletrid |
|- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) = ( vol* ` A ) ) |