Metamath Proof Explorer


Theorem ovrcl

Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Hypothesis ovprc1.1
|- Rel dom F
Assertion ovrcl
|- ( C e. ( A F B ) -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 ovprc1.1
 |-  Rel dom F
2 n0i
 |-  ( C e. ( A F B ) -> -. ( A F B ) = (/) )
3 1 ovprc
 |-  ( -. ( A e. _V /\ B e. _V ) -> ( A F B ) = (/) )
4 2 3 nsyl2
 |-  ( C e. ( A F B ) -> ( A e. _V /\ B e. _V ) )