Metamath Proof Explorer


Theorem ovres

Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006)

Ref Expression
Assertion ovres
|- ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. C /\ B e. D ) -> <. A , B >. e. ( C X. D ) )
2 1 fvresd
 |-  ( ( A e. C /\ B e. D ) -> ( ( F |` ( C X. D ) ) ` <. A , B >. ) = ( F ` <. A , B >. ) )
3 df-ov
 |-  ( A ( F |` ( C X. D ) ) B ) = ( ( F |` ( C X. D ) ) ` <. A , B >. )
4 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
5 2 3 4 3eqtr4g
 |-  ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) )