Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | ovres | |- ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi | |- ( ( A e. C /\ B e. D ) -> <. A , B >. e. ( C X. D ) ) |
|
2 | 1 | fvresd | |- ( ( A e. C /\ B e. D ) -> ( ( F |` ( C X. D ) ) ` <. A , B >. ) = ( F ` <. A , B >. ) ) |
3 | df-ov | |- ( A ( F |` ( C X. D ) ) B ) = ( ( F |` ( C X. D ) ) ` <. A , B >. ) |
|
4 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) |