Metamath Proof Explorer


Theorem ovresd

Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ovresd.1
|- ( ph -> A e. X )
ovresd.2
|- ( ph -> B e. X )
Assertion ovresd
|- ( ph -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) )

Proof

Step Hyp Ref Expression
1 ovresd.1
 |-  ( ph -> A e. X )
2 ovresd.2
 |-  ( ph -> B e. X )
3 ovres
 |-  ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) )