Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovresd.1 | |- ( ph -> A e. X ) |
|
| ovresd.2 | |- ( ph -> B e. X ) |
||
| Assertion | ovresd | |- ( ph -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | |- ( ph -> A e. X ) |
|
| 2 | ovresd.2 | |- ( ph -> B e. X ) |
|
| 3 | ovres | |- ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |