Metamath Proof Explorer


Theorem ovrspc2v

Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Assertion ovrspc2v
|- ( ( ( X e. A /\ Y e. B ) /\ A. x e. A A. y e. B ( x F y ) e. C ) -> ( X F Y ) e. C )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( x = X -> ( x F y ) = ( X F y ) )
2 1 eleq1d
 |-  ( x = X -> ( ( x F y ) e. C <-> ( X F y ) e. C ) )
3 oveq2
 |-  ( y = Y -> ( X F y ) = ( X F Y ) )
4 3 eleq1d
 |-  ( y = Y -> ( ( X F y ) e. C <-> ( X F Y ) e. C ) )
5 2 4 rspc2va
 |-  ( ( ( X e. A /\ Y e. B ) /\ A. x e. A A. y e. B ( x F y ) e. C ) -> ( X F Y ) e. C )